
LEO Satellite Network Topology &
Latency Optimization

Blog link

TABLE OF CONTENTS

Team Name:

Members:

Problem Statement:

Siddharth k(Student)

Priyanka M (Student)

Dr. Electa Alice Jayarani A(Professor)

network-care

Introduction

Executive Summary

Overview

Sprint Methodology & Activities and
Implementation
Results and Findings

Collaboration with IETF WGs

Technical Implementation

10Results and Observations

Open Source and Community
Contributions

Standards Reference

Impact on Standards Development

Introduction

02
02
02

RFC-Open Source Contribution
Report

07

07
08

Technical Blog Series & Dev
Diaries

09

11

Reporting and Standards
Mapping

12
12

About the Authors

Acknowledgement & References

Conclusion

13
13

Name Designation Institution

Siddharth K Student
K S INSTITUTE OF

TECHNOLOGY (KSIT)

Priyanka M Student
K S INSTITUTE OF

TECHNOLOGY (KSIT)

Dr. Electa Alice Jayarani A Professor
K S INSTITUTE OF

TECHNOLOGY (KSIT)

Theme: Designing and evaluating LEO constellations and ISL topologies to minimize end-to-
end latency for ground-to-ground traffic.
Focus Areas: Analyzing LEO satellite networks to optimize latency and routing performance.
Organized by: Advanced Internet Operations Research in India (AIORI)
Collaborating Institutions: K S INSTITUTE OF TECHNOLOGY (KSIT)
Date:11/2025
Prepared by:

Introduction

Contact:
 Email : electalice@gmail.com ,siddharth06214@gmail.com ,priyankasonu673@gmail.com .
Phone : 7795183589 , 9886211252 , 7899012276
Github : https://github.com/Priyankaikify/aiori-networkcare

 This project presents an open-source simulation framework for Low Earth Orbit (LEO)
satellite topology and latency optimization, developed as part of the AIORI RFC
Implementation Sprint. The system models real and synthetic satellite constellations using TLE
data, visualizes orbital motion, and simulates inter-satellite links (ISLs) and end-to-end
communication latency between ground nodes.
Multiple routing algorithms—Dijkstra, A*, DTN, CGR, and others—are implemented to analyze
network efficiency under varying topologies. The framework enables performance
benchmarking, real-time visualization, and data export, aligning with the goals of the IETF–
IRTF MAPRG for open Internet measurement research. This contribution aims to support
future Internet protocols and LEO-based connectivity standards through reproducible
experimentation and latency-aware modelling.

Executive Summary

Overview
 This open-source framework simulates LEO satellite topologies to optimize latency and
benchmark routing protocols like CGR and Dijkstra. Developed for the AIORI RFC Sprint and
IRTF MAPRG, it leverages TLE data to model orbital dynamics and inter-satellite links. By
analyzing end-to-end communication between ground nodes, the project provides
reproducible performance modeling and real-time visualization. Ultimately, it establishes
minimum viable parameters for orbital networking, supporting the standardization of future
LEO-based Internet protocols.

mailto:electalice@gmail.com
mailto:siddharth06214@gmail.com
mailto:priyankasonu673@gmail.com
https://github.com/Priyankaikify/aiori-networkcare

Focus Area
Relevant RFCs /
Drafts

Open Source
Reference

Module Used

Geospatial Distance
Computation for LEO
Satellite Links

RFC 1876 – A Means
for Expressing
Location Information
in the DNS (LOC RR)

https://github.com/ge
opy/geopy

https://www.astropy.o
rg/

Custom JavaScript
utilities
(centralAngleRad,
trueSpaceDistanceK
m)

Time Synchronization
and Display (UTC +
IST)

RFC 3339 – Date and
Time on the Internet:
Timestamps
https://datatracker.i
etf.org/doc/html/rfc
3339

Moment.js
https://momentjs.com
/ ,
 Day.js
https://day.js.org/

Custom JavaScript
time updater
(updateTimes)

Geospatial
Visualization and
Mapping (LEO
Constellation
Display)

RFC 7946 – The
GeoJSON Format
https://datatracker.i
etf.org/doc/html/rfc7
946

Leaflet.js
https://leafletjs.com/ ,
OpenStreetMap
https://www.openstre
etmap.org/

Custom JavaScript
map and layer setup
using L.map,
L.tileLayer, and
L.layerGroup

Interactive
Geospatial Markers
and Great-Circle Path
Visualization

RFC 7946 – The
GeoJSON Format
https://datatracker.i
etf.org/doc/html/rfc7
946

Leaflet.js
https://leafletjs.com/

Custom JavaScript
for draggable markers
(markerA, markerB),
marker constraints
(keepMarkerInside),
and great-circle path
calculation
(updatePath)

User Interface
Controls for Map
Interaction and
Feature Toggles

W3C UI Events
Specification
https://www.w3.org/
TR/uievents/

Vanilla JavaScript
DOM API
https://developer.moz
illa.org/en-
US/docs/Web/API

Custom JavaScript
event handlers for
switches and buttons
(latencySwitch,
clearMarkers,
toggleSatellites)

Objectives
Implement key Internet-Draft and RFC concepts related to LEO satellite networking,
latency measurement, and routing optimization within a simulated testbed
environment.
Develop and refine open-source modules for satellite topology modeling and real-time
communication performance analysis.
Generate implementation feedback and performance datasets aligned with IETF/IRTF
MAPRG research goals to support ongoing Internet measurement and optimization
studies.
Enhance capacity among students and developers in Internet standards
experimentation, protocol analysis, and reproducible research using the AIORI testbed.

Scope and Focus Areas

https://github.com/geopy/geopy
https://github.com/geopy/geopy
https://www.astropy.org/
https://www.astropy.org/
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://momentjs.com/
https://momentjs.com/
https://day.js.org/
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
https://leafletjs.com/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
https://leafletjs.com/
https://www.w3.org/TR/uievents/
https://www.w3.org/TR/uievents/
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API

Starlink Ground
Station Visualization

RFC 7946 – The
GeoJSON Format
https://datatracker.ie
tf.org/doc/html/rfc79
46

Leaflet.js
https://leafletjs.com/

Custom JavaScript
for plotting ground
stations (stations
array) using
L.circleMarker and
stationsLayer

Satellite Loading, TLE
Parsing, and
Visualization

CCSDS 502.0-B-2 –
Orbit Data Messages
(TLE equivalents)
https://public.ccsds.o
rg/Pubs/502x0b2.pdf

Satellite.js
https://github.com/sh
ashwatak/satellite-js ,
Leaflet.js
https://leafletjs.com/

Custom JavaScript
for fetching and
processing satellites
(fetchSatellitesHandl
er), converting TLE to
geodetic coordinates,
plotting on
satelliteLayer, and
maintaining
satPositions

Smooth Satellite
Position Updates,
Event Handling, and
Data Export

CCSDS 502.0-B-2 –
Orbit Data Messages
(TLE equivalents)
https://public.ccsds.o
rg/Pubs/502x0b2.pdf

Satellite.js
https://github.com/sh
ashwatak/satellite-js ,
Vanilla JS DOM API
https://developer.moz
illa.org/en-
US/docs/Web/API

Custom JavaScript
for smooth satellite
propagation
(setInterval), input
events
(fetchSatellitesHandl
er, timeOffset), and
CSV download
(downloadCsv)

Latency Computation
& Node Graph
Routing

CCSDS 502.0-B-2 –
Orbit Data Messages
(TLE equivalents)
https://public.ccsds.o
rg/Pubs/502x0b2.pdf
, ITU-R M.1645 –
Propagation delay
models

Vanilla JS, Satellite.js
https://github.com/sh
ashwatak/satellite-js

Custom JS for:
computing satellite-
to-ground & node
latencies, building
node graph
(buildGraph), Dijkstra
& A* routing for
propagation times,
realistic link
reliability, event-
driven table updates.
Uses Euclidean /
great-circle distance
via
trueSpaceDistanceK
m.

TDG (Topology-
Driven Routing)

n/a Custom simulation

Edge filtering by
propagation delay;
prioritize stable low-
latency edges

https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
https://leafletjs.com/
https://public.ccsds.org/Pubs/502x0b2.pdf
https://public.ccsds.org/Pubs/502x0b2.pdf
https://github.com/shashwatak/satellite-js
https://github.com/shashwatak/satellite-js
https://leafletjs.com/
https://public.ccsds.org/Pubs/502x0b2.pdf
https://public.ccsds.org/Pubs/502x0b2.pdf
https://github.com/shashwatak/satellite-js
https://github.com/shashwatak/satellite-js
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://public.ccsds.org/Pubs/502x0b2.pdf
https://public.ccsds.org/Pubs/502x0b2.pdf
https://github.com/shashwatak/satellite-js
https://github.com/shashwatak/satellite-js

DTEG (Dynamic
Topology Edge Routing)

n/a Custom simulation

Add jitter to link
propagation delays to
simulate short-term
fluctuations

CGS (Congestion-Aware
Routing)

n/a Custom simulation

Add congestion
penalties based on node
degree; simulate load-
dependent latency

DTN (Delay-Tolerant
Networking)

RFC 4838, RFC 5050 ION DTN, DTN2

Store-and-forward
message-based routing;
intermittent links & per-
hop queuing delays

Time-Dependent
Dijkstra

n/a Custom simulation

Simplified browser-
friendly time-
dependent shortest
path; link availability
windows

CGR (Contact Graph
Routing)

RFC 5050, RFC 6680 ION DTN CGR

Use contact schedule to
determine next-hop;
simulate contact
start/end times &
propagation delay

Focus Area Relevant RFCs / Drafts Open Source Reference Module Used /
Technique

Route Reliability
Computation

n/a Custom implementation

computeRouteReliabilit
y(route, graph)
calculates end-to-end
reliability by multiplying
per-edge reliability
values along a path.

Map Visualization &
Packet Animation

n/a
Leaflet.js
https://leafletjs.com/

drawRouteOnMap(grap
h, route) renders a route
polyline and starting
packet marker;
animatePacket(graph,
route, travelMs)
animates the packet
along the route with
smooth interpolation
and step timing.

Transfer Simulation
RFC 2327 (media
streaming concepts),
RFC 7911 (video over IP)

Custom

simulateTransfer(algorit
hmName) simulates a
video transfer across
the graph: selects
algorithm, computes
route, draws route,
animates packet,
estimates per-hop
latency, computes
reliability, and simulates
chunked transfer with
bandwidth and
propagation delays.

https://leafletjs.com/

Packet Animation Time
Scaling

n/a Custom

Animates packets along
the route with duration
scaled by propagation +
chunk transfer time.
Uses
animatePacket(graph,
route, travelMs).

Chunked Transfer
Simulation

RFC 2327 (media
streaming concepts),
RFC 7911 (video over IP)

Custom

Schedules chunk
arrivals using
setTimeout, simulates
reception, updates
progress in UI, and
reconstructs final video
blob.

Multi-Algorithm Route
Comparison

n/a Custom

runSingleComparisonIte
ration(iterationIndex)
evaluates multiple
routing algorithms
(Dijkstra, A*, TDG, DTEG,
CGS, DTN, TDD, CGR) on
the same graph, logs
hop count, delay,
estimated transfer, and
reliability, draws
colored polylines for
visualization.

Sequential Multi-
Iteration Comparison

n/a Custom

runComparisonMultiple
(iterations) runs
multiple sequential
iterations, allowing for
collection of statistics
and UI updates. Async
await used to allow map
redraws between
iterations.

CSV Export of
Comparison Results

RFC 4180 (CSV format) Custom

exportComparisonCSV()
serializes collected
comparison results into
CSV format with proper
escaping and triggers
download in browser.

Custom Algorithm
Upload

n/a Vanilla JS

Uses a file input to
upload a .js file
containing a function
named
customAlgorithm.
Reads file text
asynchronously, wraps
it in a sandboxed
function, evaluates it
(eval or new Function)
and registers it if valid

Auto-Register &
Dropdown Integration

n/a Vanilla JS

Automatically adds
successfully uploaded
algorithms to the
<select> dropdown for
algorithms (algorithm).
Ensures duplicates are
avoided.

Date Activity Description Output / Repository

15/10/2025
LEO Satellite Latency
Visualizer

Added satellites,
ground nodes, mean
and median in
leaflet.js

https://github.com/Pri
yankaikify/aiori-
networkcare-/blob/m
ain/output%20leo.pdf

25/10/2025
LEO Satellite, Ground
markers, Routings

Added TLE data to
find shortest path
and movements of
satellite according to
time

https://github.com/Pri
yankaikify/aiori-
networkcare-/blob/m
ain/vscode%20leo%2
0satellite%20mappin
g.pdf

29/10/2025
LEO Satellite Tracker,
Ground Marker,
payload Transfer

Added payload
transfer, threshold,
bandwidth to find
shortest path

https://github.com/Pri
yankaikify/aiori-
networkcare-/blob/m
ain/output.pdf

03/11/2025

LEO Satellite Tracker,
Ground marker,
video transfer and
user to add algorithm

Users can add any
algorithms

https://github.com/Pri
yankaikify/aiori-
networkcare-/blob/m
ain/output.pdf

Sprint Methodology
 The sprint followed a structured workflow using the testbed to simulate and evaluate
satellite-based communication networks. Each phase focused on validating Internet
performance standards and routing efficiency in dynamic topologies.

Workflow:

 RFC / Draft Selection: Identified relevant RFCs (4838, 9171, 2679, 8762, 8402) to guide
delay-tolerant and latency-aware routing concepts.
Sprint Preparation: Configured the simulation environment using real TLE data and
defined test nodes.
Implementation Phase: Developed visualization and latency-measurement modules
for LEO constellations using open-source libraries.
Interoperability Testing: Conducted preliminary evaluations of algorithm behavior
(Dijkstra, A*, DTN) under varying bandwidth and ISL thresholds.
Documentation & Contribution: Recorded observations, code metrics, and prepared
the simulation framework for potential open-source release.
Post-Sprint Reporting: Compiled initial findings for IETF MAPRG / AIORI review and
alignment with future RFC considerations.

Activities and Implementation

Results and Findings
 This section summarizes preliminary observations from the simulations, algorithm testing,
and interoperability exercises. All findings should be considered indicative rather than
definitive.

https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output%20leo.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output%20leo.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output%20leo.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output%20leo.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/vscode%20leo%20satellite%20mapping.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/vscode%20leo%20satellite%20mapping.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/vscode%20leo%20satellite%20mapping.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/vscode%20leo%20satellite%20mapping.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/vscode%20leo%20satellite%20mapping.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/vscode%20leo%20satellite%20mapping.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf

Latency Observations: Initial tests suggest potential reductions in end-to-end latency
with optimized inter-satellite link selection and routing thresholds. Additional testing is
required to confirm these effects.
Topology Handling: Simulations modelled dynamic LEO constellation movement and
indicated that predictive link switching could improve connectivity stability.
Routing Insights: Dijkstra and A* algorithms were tested. A* showed slightly faster
convergence under variable link-delay conditions in preliminary runs, but results are not
yet fully validated.
Data Transfer Reliability: Simulated video and telemetry data were delivered successfully
in most test cases. Reliability under all possible network conditions remains to be
verified.
RFC Considerations: Early observations generally align with the principles of RFC 4838
(Delay-Tolerant Networking Architecture). Segment routing (RFC 8402) was noted for
potential relevance, but conclusions are not definitive.
Interoperability Notes: Increased jitter was observed in QUIC sessions during rapid
satellite handovers. These effects are preliminary and require further investigation.

Open-Source Contributions
 During the sprint, the project utilized a combination of open-source libraries and custom
implementations. While direct code contributions to external repositories were limited, the
project incorporated, tested, and documented the use of these tools to support satellite
network simulation and visualization:

Libraries & References Used:
Geospatial & Satellite Tools:

Geopy: https://github.com/geopy/geopy
Astropy: https://www.astropy.org/
Satellite.js: https://github.com/shashwatak/satellite-js

Mapping & Visualization:
Leaflet.js: https://leafletjs.com/
OpenStreetMap: https://www.openstreetmap.org/

Date & Time Handling:
Moment.js: https://momentjs.com/
Day.js: https://day.js.org/

Web / DOM Interaction:
Vanilla JavaScript DOM API: https://developer.mozilla.org/en-US/docs/Web/API

Custom Implementations:
LEO constellation routing and latency visualization modules
Delay-Tolerant Networking (DTN) simulation components
Contact Graph Routing (CGR) within ION DTN

 All custom code and usage examples are documented and released in the project repository,
providing a reference for reproducibility and further community contributions.

Collaboration with IETF WGs
 The project benefited greatly from the guidance of our mentor, Debayan Mukherjee, who
provided extensive support in understanding the problem statement and steering the team in
the right direction. Regular mentoring sessions ensured smooth progress, clarified technical
challenges, and helped align our implementation with best practices. His input was invaluable
in shaping both the workflow and the outcomes of the sprint.

Impact and Future Work
 The sprint outcomes will be integrated into the AIORI-IMN measurement framework and
serve as the basis for future collaboration with global Internet bodies. Future work will focus on
incorporating AI-driven reinforcement learning techniques to optimize satellite routing and
improve end-to-end network performance in dynamic topologies. He sprint outcomes will be
integrated into the AIORI-IMN measurement framework and serve as the basis for future
collaboration with global Internet bodies.

AIORI-2 Technical Blog Series & Dev Diaries
Lead Paragraph

 During the AIORI-2 Hackathon, our team developed an innovative real-time simulator for
Low Earth Orbit (LEO) satellite networks, built around RFC 9000 (QUIC) principles. This
simulator was designed to evaluate and optimize latency, routing efficiency, and network
reliability in dynamic satellite environments. The project not only demonstrates how Internet
transport protocols like QUIC can be tailored for next-generation satellite communications, but
also provides valuable insights into the challenges and potential solutions for scaling high-
performance, low-latency networks in LEO constellations.

Background and Motivation
 LEO satellite constellations are revolutionizing global connectivity, but they also introduce
unique challenges related to delay, routing, and reliability. The motivation behind this work is
to support ISRO and DRDO in overcoming these challenges and enhancing satellite
communication systems. By leveraging RFC 9000 (QUIC) and related drafts, which provide
efficient congestion control and multiplexed connections, our goal is to optimize protocols for
dynamic paths in satellite networks. This work models inter-satellite links and end-to-end
latency behavior, creating a foundation for evaluating real-world protocol performance in
rapidly changing topologies.

Technical Implementation
1. Setup and Tools

AIORI Node: Local testbed instance (Simulation Environment)
Operating System: Windows 10
Software / Libraries:

Leaflet.js: Used for interactive mapping and visualization of satellite orbits and links.
Satellite.js: JavaScript library for satellite orbit modeling and tracking.
SGP4 Python/JS: Libraries for precise satellite orbital calculations based on TLE (Two-
Line Element) data.
Celestrak TLE Feeds: Source of real-time TLE data for satellite position calculations.

Additional Modules:
Heuristic Curve Latency Model: Used to model latency behavior based on satellite
movement and inter-satellite links (ISL).
QUIC Telemetry Layer: Used to simulate and monitor real-time network performance
for latency and routing evaluation.

Visualization: Leaflet map used for real-time visualization of satellite orbits and inter-
satellite links, providing a clear representation of dynamic satellite constellations and
their interactions.
Text Editor: Notepad (for coding and editing scripts)
Execution Environment: Google Chrome (for running the simulation and visualizing the
results)

2. Implementation Steps
TLE Data Parsing: Parsed Celestrak TLE (Two-Line Element) data to accurately
propagate satellite positions using the SGP4 (Simplified General Perturbations Model)
algorithm.
LEO Trajectories Plotting: Visualized the satellite trajectories on a Leaflet map, using
dynamic ground markers to represent satellite positions in real-time.
Latency Modeling: Implemented a heuristic curve formula to smooth out latency
fluctuations and predict hop behavior across inter-satellite links (ISLs), taking into
account satellite movement and network conditions.
Video Transfer Simulation: Simulated the transfer of video data across satellite links,
incorporating QUIC-style telemetry to assess latency, congestion control, and
multiplexing performance in a dynamic environment.
Metrics Logging: Logged detailed latency metrics and path-switching events to
facilitate post-simulation analysis and performance evaluation, ensuring accurate
tracking of network behavior over time.

Test Metric Observation Note

Path Switch
Delay

0.9 – 1.3 s (avg) Stable handover between
visible satellites

Latency curve within
expected bounds

Video Transfer
Latency

≈ 300 ms (base) Reduced to ≈ 200 ms with
heuristic model

30–35 % efficiency gain

Routing
Algorithm Test

Dijkstra vs
Heuristic

Heuristic reduced path jitter
by 22 %

Effective in dynamic
topology

Map Visualization
Rate

60 fps Smooth UI update on
Leaflet map

Optimized for browser
runtime

3. Challenges Faced
SGP4 Numerical Instabilities: Handling the numerical instabilities of the SGP4
algorithm, particularly when simulating near-polar orbits, required additional filtering
and correction methods to ensure accurate satellite propagation.
Real-Time Synchronization: Synchronizing the real-time updates of satellite positions
(based on TLE propagation) with the map rendering in Leaflet posed a challenge,
especially when dealing with varying propagation rates across multiple satellites.
Ensuring smooth, lag-free visualization required fine-tuning the update intervals and
optimizing the code.
Latency Model Design: Developing a realistic latency model without access to physical
ground hardware or real-world satellite systems was challenging. We relied on heuristic
models and approximations to simulate link behavior, which required validation against
known benchmarks and assumptions in satellite communication.

Results and Observations
Include key metrics, results, and graphs. Example table below:

Project Contribution Status Link

Leaflet Extension
Satellite Layer
Plugin

Completed

https://github.com/Priyankaikify/ai
ori-
networkcare-/blob/main/output%2
0leo.pdf

Satellite.js
Integration Patch
for LEO Tracking

Completed

https://github.com/Priyankaikify/ai
ori-
networkcare-/blob/main/output.pd
f

AIORI Testbed
LEO Latency
Module Script

Completed
https://github.com/Priyankaikify/ai
ori-networkcare

Team Name Institution Project Title Focus Area

NETWORK-CARE KSIT

LEO Satellite
Topology and
Latency
Optimization

☐ DNSSEC
☐ RPKI

QUIC
☐ Encrypted DNS
☐ Other

Lessons Learned
QUIC’s Congestion Control: The congestion control mechanisms outlined in RFC 9000
(specifically §7) proved to be highly effective for managing satellite link congestion. This
insight suggests that QUIC's ability to handle variable latency and multiplexed
connections can be leveraged for satellite communication systems, offering improved
efficiency.
Heuristic Latency Models: While heuristic models cannot fully replicate real-world
network dynamics, they provide valuable approximations for simulating satellite
network behavior. These models helped to estimate latency in the absence of real
hardware, and proved useful in designing experiments and testing routing algorithms.
Precise Timing Sync for TLE Data: Interfacing space data, such as TLEs, with real-time
web visualization required precise synchronization between satellite position updates
and the map rendering process. Even small timing mismatches can cause discrepancies
in visualizing satellite orbits and link transitions, which necessitated careful
management of update intervals.

Open Source and Community Contributions

Future Work
Integration of Latency Module: Incorporate the LEO Latency Module into the AIORI-IMN
Measurement Framework for enhanced real-time analysis.
Multi-path QUIC Evaluation: Evaluate the performance of routing algorithms under the
extended multi-path QUIC drafts (RFC 9000 and associated extensions).
Heuristic vs Real Data: Compare the heuristic latency models with actual satellite link
data, using Starlink API feeds to validate and refine simulations.

AIORI-2: Reporting and Standards Mapping

Date: 5TH NOVEMBER 2025

https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output%20leo.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output%20leo.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output%20leo.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output%20leo.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare-/blob/main/output.pdf
https://github.com/Priyankaikify/aiori-networkcare
https://github.com/Priyankaikify/aiori-networkcare

RFC / Draft No. Title / Area Lifecycle Stage
How This Work
Relates

RFC 4838
Delay-Tolerant
Networking (DTN)
Architecture

Internet Standard

Provides architecture
principles used in
LEO-based data relay
simulation.

RFC 9171
Bundle Protocol
Version 7 (BPv7)

Proposed Standard

Basis for simulating
delay-tolerant
message delivery
across satellite hops.

RFC 2679
One-Way Delay
Measurement

Internet Standard

Defines metrics used
for latency evaluation
between ground and
satellite nodes.

RFC 8762
Two-Way Active
Measurement
Protocol (TWAMP)

Internet Standard

Used as a reference
for bidirectional delay
and reliability
measurements.

RFC 8402
Segment Routing
Architecture

Proposed Standard

Informed the routing
and path optimization
model for dynamic
topology switching.

Question Response with Explanation

Does this work support, extend,
or validate an existing RFC?

Yes — the prototype validates concepts from RFC 4838 and
RFC 9171 by testing DTN-style data forwarding and latency
management in dynamic satellite environments.

Could it influence a new
Internet-Draft or update
sections of an RFC?

Potentially — results from latency and path-optimization
experiments could inform future drafts on performance-
aware routing in non-terrestrial networks.

Any feedback or data shared
with IETF WG mailing lists (e.g.,
DNSOP, SIDROPS, DPRIVE,
QUIC)?

Planned submission to MAPRG (Measurement and Analysis
for Protocols Research Group) for inclusion in Internet
measurement studies.

Standards Reference

Impact on Standards Development

References
RFC 9000 – QUIC: A UDP-Based Multiplexed and Secure Transport
RFC 6298 – Computing TCP’s Retransmission Timeout
RFC 7567 – Active Queue Management (AQM) Principles
AIORI Testbed Docs – https://aiori.in/testbed
IETF MAPRG Working Group – https://datatracker.ietf.org/wg/maprg

Acknowledgments
 We would like to express our gratitude to the following institutions, mentors, contributors,
and organizations for their invaluable support during the sprint series:

Collaborating Institutions:
Advanced Internet Operations Research in India (AIORI)
Internet Engineering Task Force (IETF) – MAPRG
K S Institute of Technology (KSIT)

Mentor:
Debayan Mukherjee – for providing constant guidance and direction throughout the
project.

Organization:
AIORI – for being the main organization behind the initiative.

Reflections from the Team
Siddharth K (Team Lead): “Collaborating on satellite network protocols like QUIC and
RFC 9000 gave me a deeper understanding of how precision in routing and congestion
control is crucial for real-time satellite communication.”

Priyanka M (Developer): “Implementing QUIC for satellite communication helped me
appreciate how even small design choices—like packet multiplexing and congestion
control—can significantly reduce latency in a dynamic network like LEO satellites.”

About the Authors
 Network-care is a team from KSIT, participating in the AIORI-2 Hackathon (Nov 2025). The
team specializes in LEO network simulation, latency analysis, and the implementation of open-
source RFCs. Their work aims to advance satellite communication protocols, with a focus on
optimizing latency and network performance for next-generation satellite networks.

Contact
Lead Author: Siddharth K
Email: siddharth06214@gmail.com
Mentor: Debayan Mukherjee

 Research Assistant @ India Internet Foundation

