




FINALE

NOVEMBER  
2025

ADAPTERS, AND



Team Name: **caffeine coders**

**Members:** • virpratap Singh(Student)

- **Ishika Pandey (Student)**
- **Dr. Tejaswi Khanna(Professor)**

## Problem Statement: Anycast Flipping & CDN User Experience

# TABLE OF CONTENTS

|                                                      |    |    |
|------------------------------------------------------|----|----|
| Introduction                                         |    |    |
| Introduction                                         | 02 |    |
| Executive Summary                                    | 02 |    |
| Overview                                             | 02 |    |
| RFC-Open Source Contribution Report                  |    |    |
| Sprint Methodology                                   | 04 |    |
| Activities and Implementation & Results and Findings | 05 |    |
| Collaboration with IETF WGs                          | 06 |    |
| Technical Blog Series & Dev Diaries                  |    |    |
| Technical Implementation                             | 07 |    |
| Results and Observations                             | 08 |    |
| Open Source and Community Contributions              | 11 |    |
| Blog link                                            |    |    |
| Reporting and Standards Mapping                      |    |    |
| Standards Reference                                  |    | 12 |
| Impact on Standards Development                      |    | 12 |
| Conclusion                                           |    |    |
| About the Authors                                    |    | 13 |
| Acknowledgement & References                         |    | 14 |

## Blog Link

# Introduction

- **Theme:** Implementation and Testing of Selected Internet-Drafts / RFCs using AIORI Testbed
- **Focus Areas:** Anycast flipping and CDN user experience.
- **Organized by:** Advanced Internet Operations Research in India (AIORI)
- **Collaborating Institutions:** Amity University Greater Noida
- **Date:** 11/2025
- **Prepared by:**

| Name               | Designation | Institution                    |
|--------------------|-------------|--------------------------------|
| Virpratap Singh    | Student     | Amity University Greater Noida |
| Ishika Pandey      | Student     | Amity University Greater Noida |
| Dr. Tejaswi Khanna | Professor   | Amity University Greater Noida |

**Contact:** Virpratap.work@gmail.com (+91 9717053100)

- **Executive Summary**

This contribution introduces "Predictive Cache Pre-positioning" - a novel BGP-triggered solution that eliminates performance degradation during anycast routing failures in CDNs. Instead of reacting to failures after they occur, we predict them using BGP instability patterns and proactively pre-warm caches on surviving nodes.

Key Contributions:

- Developed a complete BGP-aware toolchain for simulating and measuring anycast flip impact on web performance metrics (FCP, response times).
- Implemented predictive cache pre-positioning that uses BGP telemetry to anticipate failures and pre-warm content before outages occur.
- Demonstrated performance improvement over traditional anycast failover, reducing response times during flips.
- Created a production-ready solution using existing BGP monitoring infrastructure with zero new protocol requirements.
- Validated the approach in a realistic anycast lab environment with measurable cross-layer optimization benefits.
- Introduced genuine novelty by using network-layer signals (BGP instability) to drive application-layer optimizations (cache warming).

- **Overview**

This contribution introduces Predictive Cache Pre-positioning, a BGP-triggered optimization that proactively warms CDN caches to prevent performance degradation during anycast routing flips. By interpreting network-layer signals—specifically BGP instability patterns—the framework anticipates imminent path shifts and synchronizes content to surviving nodes before failures occur. Developed as part of the AIORI RFC Implementation Sprint, this solution includes a complete BGP-aware toolchain for simulating anycast impacts on web metrics like FCP and response times. The research demonstrates a novel cross-layer approach, leveraging existing telemetry to reduce latency and improve reliability without requiring new protocol standards, aligning directly with the open measurement goals of the IETF-IRTF MAPRG.

## • Objectives

- Develop and test BGP-triggered mitigation strategies using predictive cache pre-positioning to eliminate performance degradation during anycast failures.
- Generate implementation feedback for CDN optimization techniques that demonstrate how network-layer intelligence can drive application-layer performance, providing actionable insights for IETF MAPRG and CDNI working groups.
- Build practical network operator tools for measuring and visualizing anycast performance impacts during BGP convergence, enhancing capacity for Internet standards implementation testing and cross-layer optimization research.
- Establish quantitative benchmarks for anycast flip performance under different caching strategies, creating a reference framework for CDN resilience evaluation.
- Demonstrate real-world deployability of predictive caching solutions using existing BGP monitoring infrastructure without requiring protocol changes or CDN architecture modifications.

## • Scope and Focus Areas

| Focus Area                       | Relevant RFCs / Drafts                                           | Open-Source Tools Used                                                     | Testing Environment                        |
|----------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|
| BGP Anycast & CDN Performance    | RFC 4271 (BGP-4), RFC 4786 (Anycast), RFC 7938 (BGP Monitoring)  | BIRD, Docker, Nginx, Custom BGP monitors                                   | Anycast BGP Lab Environment                |
| Predictive Caching & Performance | RFC 7234 (HTTP Caching), RFC 7946 (LINCS), MAPRG methodologies   | Custom cache warmers, curl timing, HTTP risk sharing                       | Cross-Layer Optimization Testbed           |
| Network Simulation & Testing     | IETF Network Testing Methodologies, BCP 198 (Routing Resilience) | Docker containers, Custom BGP failure simulation, Performance benchmarking | Production-Realistic Anycast Lab           |
| Cross-Layer Optimization         | MAPRG frameworks, Operational Best Practices                     | Real-time BGP/HTTP correlation tools, Three-strategy comparison framework  | BGP-Triggered Cache Validation Environment |

## • Sprint Methodology

The project followed a structured workflow consisting of selection, implementation, testing, and contribution phases using AIORI testbed infrastructure and open-source tools.

### • Workflow:

- RFC / Draft Selection: Identified web performance standards and caching optimization techniques relevant to content delivery network challenges during network transitions.
- Sprint Preparation: Established container-based lab environments with multi-PoP topologies, configured routing simulations, and prepared performance measurement infrastructure.

- Developed innovative BGP-triggered predictive caching mechanisms using real-time BGP instability monitoring, created automated cache pre-positioning systems for failure scenarios, and built comprehensive performance measurement tooling.
- Validated predictive caching strategies across multiple failure scenarios, tested performance during BGP route convergence, and measured user experience impact across varying network instability conditions.
- Documentation & Contribution: Produced comprehensive testing frameworks for CDN optimization, documented route transition mitigation patterns, and prepared open-source tooling for community adoption.
- Post-Sprint Reporting: Generated detailed performance impact analysis, documented implementation insights for web standards development, and prepared optimization guidelines for content delivery networks.

## • Activities and Implementation

| Date       | Activity                                       | Description                                                                                                                                                                                        | Output / Repository                                                                                   |
|------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 24/09/2024 | Sprint 1: Network Simulation Setup             | Created script-based network emulation with artificial latency injection (50ms stable vs 150ms flip scenarios).                                                                                    | <a href="https://github.com/Ishiikaa02/caffinecoders">https://github.com/Ishiikaa02/caffinecoders</a> |
| 01/10/2024 | Sprint 2: Performance Measurement Framework    | Implemented FCP measurement using Puppeteer and fallback curl-based timing for CDN performance analysis                                                                                            | <a href="https://github.com/Ishiikaa02/caffinecoders">https://github.com/Ishiikaa02/caffinecoders</a> |
| 15/10/2024 | Sprint 3: Proxy-Based Mitigation               | Developed HTTP proxy with Service Worker injection and client-side caching strategies for flip mitigation                                                                                          | <a href="https://github.com/Ishiikaa02/caffinecoders">https://github.com/Ishiikaa02/caffinecoders</a> |
| 24/10/2024 | Sprint 4: Realistic Anycast Lab Implementation | Built comprehensive anycast simulation environment using Docker containers with full BGP routing, enabling realistic testing of predictive cache pre-positioning under production-like conditions. | <a href="https://github.com/Ishiikaa02/caffinecoders">https://github.com/Ishiikaa02/caffinecoders</a> |

## • Results and Findings

This section summarizes key technical insights, interoperability challenges, and performance outcomes observed during testing.

- Key Technical Insights:
  - Performance Impact Quantified: Measured performance improvement during BGP-triggered anycast flips (120ms → 71ms), demonstrating significant user experience preservation during network failures.
  - Predictive Caching Effectiveness: BGP-triggered cache pre-positioning demonstrated performance recovery over traditional approaches and improvement over continuous sync methods.

- Measurement Reliability: Real BGP convergence timing combined with HTTP response measurements provided accurate cross-layer performance assessment in production-like environments.
- Interoperability Challenges:
  - BGP Monitoring Integration: Real-time BGP telemetry collection required careful synchronization across distributed nodes while maintaining routing stability.
  - Cache Timing Accuracy: Predictive warming needed precise timing to occur during healthy state while at-risk node remained reachable.
  - Tool Integration Complexity: Containerized BGP environment revealed dependencies on network namespace configurations and routing daemon stability.
- Performance Outcomes:
  - Mitigation Success: Predictive pre-positioning maintained average response times even during complete PoP failures, compared to cold caches.
  - Resource Optimization: Risk-based pre-warming eliminated wasteful continuous synchronization while maintaining performance benefits.
  - Architecture Validation: HTTP-based risk sharing proved effective for rapid inter-PoP coordination without requiring new protocols or CDN infrastructure changes.
  - Cross-Layer Breakthrough: Demonstrated that BGP-layer intelligence can effectively drive application-layer optimizations, enabling proactive rather than reactive failure handling.

- **Open-Source Contributions**

- Code Repositories Created:
  - Predictive-Cache-Prepositioning: Complete project repository containing BGP monitoring tools, cache warming systems, and performance measurement frameworks.
  - Anycast-BGP-Lab: Docker container templates for realistic anycast simulation environments with full BGP routing. (<https://github.com/Ishiikaa02/caffienecoders>)
- Documentation Contributions:
  - BGP-Triggered Caching Patterns: Comprehensive guide on implementing predictive cache pre-positioning using BGP telemetry in CDN environments.
  - Cross-Layer Optimization Best Practices: Documentation on integrating network-layer signals with application-layer caching strategies.
  - Anycast Performance Methodology: Standardized approaches for quantifying BGP convergence impacts and cache effectiveness during failures.
- Tooling Improvements:
  - Enhanced BGP Monitoring: Implemented real-time session tracking and route withdrawal detection with configurable risk thresholds.
  - Predictive Warming Engine: Developed automated cache pre-positioning systems that trigger based on BGP instability metrics.
  - Performance Benchmarking Suite: Created comprehensive measurement scripts for comparing traditional vs predictive caching during anycast flips.
  - Reproducible BGP Lab Environments: Built containerized anycast simulations with realistic routing dynamics for validation testing.
  - HTTP-based Coordination: Implemented lightweight inter-PoP communication for risk status sharing without protocol modifications.

- **Collaboration with IETF WGs**

- Planned for MAPRG WG: Will share measurement data showing performance degradation during anycast BGP failures and demonstrate recovery through predictive cache pre-positioning. Relevant for routing operational practices and cross-layer CDN optimization.
- Relevant for GROW WG: Will contribute findings on BGP-triggered caching effectiveness during route convergence, providing real-world data on how network-layer intelligence can drive application-layer performance improvements during routing instability.
- Potential for CDNI WG: Can share implementation experience with inter-PoP cache coordination strategies that use existing BGP infrastructure, demonstrating how predictive warming can enhance content delivery resilience without protocol modifications.

## • Impact and Future Work

- Immediate Impact:
  - Measurement Framework Enhancement: The predictive cache pre-positioning strategies and cross-layer performance measurement methodologies will be integrated into the MAPRG measurement framework for ongoing CDN performance monitoring during BGP failures.
  - Operational Best Practices: Documented BGP-triggered mitigation techniques provide actionable guidance for network operators experiencing route instability, enabling proactive cache management without infrastructure changes.
  - CDN Architecture Innovation: Demonstrated that existing BGP monitoring infrastructure can be leveraged for application performance optimization, creating new opportunities for cross-layer coordination.
- Future Work Directions:
  - Advanced BGP Lab Integration: Extend the realistic anycast environment with multi-AS simulations and Internet-scale topology modeling for more accurate BGP convergence testing.
  - Multi-Provider Cache Federation: Develop BGP community-based signaling mechanisms to enable cache sharing between different CDN providers during regional outages.
  - Standardization Proposals: Develop formal IETF recommendations for BGP telemetry integration in content delivery optimization based on empirical cross-layer performance data.
  - Global Measurement Collaboration: Establish partnerships with RIPE Atlas, MANRS, and other measurement organizations to validate predictive caching effectiveness across diverse network environments.
  - Machine Learning Integration: Explore predictive algorithms that analyze BGP instability patterns to anticipate failures minutes before they occur, enabling earlier pre-positioning.
  - Production Deployment: Pilot the predictive caching system with content delivery providers to validate real-world effectiveness and operational feasibility.
  - Protocol Extensions: Investigate standardized BGP extensions for explicit cache coordination signals between autonomous systems.

## • AIORI-2 Technical Blog Series & Dev Diaries

### • Lead Paragraph

In today's globally distributed Internet, users expect instant access to content—no matter where they are or what network failures occur. But when BGP routing paths suddenly fail, even the most sophisticated CDNs struggle to maintain performance during anycast transitions. At the IETF Hackathon, our team tackled this fundamental performance challenge by pioneering **predictive cache pre-positioning** - a novel approach that uses BGP instability patterns to anticipate failures before they happen. We developed the first cross-layer optimization system that transforms network telemetry into application performance guarantees, proactively warming caches on surviving nodes to eliminate degradation during unpredictable BGP route shifts—bringing Internet reliability one step closer to truly seamless failure recovery.

### • Background and Motivation

RFC 7234 defines the standards for HTTP/1.1 caching, providing a foundation for improving web performance, scalability, and reliability. However, while it effectively manages cache validation and freshness, it does not address the fundamental challenge of proactive cache coordination during BGP-triggered anycast failures in Content Delivery Networks (CDNs).

In anycast CDNs, multiple servers share the same IP address, and users are automatically routed to the nearest available Point of Presence (PoP). During BGP route failures—caused by network outages, hardware failures, or maintenance events—traffic is rerouted to surviving PoPs. RFC 4786 describes the operational framework for anycast, but it doesn't address the critical performance gap that occurs when failed PoPs become unreachable, leaving surviving nodes with cold caches and degraded user experience.

Current CDN caching strategies operate in two suboptimal modes: either reactively fetching from dead nodes (impossible) or wastefully synchronizing constantly (inefficient). Our project addresses this fundamental limitation by introducing predictive cache pre-positioning - a novel approach that uses real-time BGP telemetry to anticipate failures before they occur.

By integrating network-layer intelligence into caching strategies, CDNs can transform from reactive failure handlers to proactive performance preservers. This cross-layer optimization enables global content delivery to maintain consistent user experiences even during complete PoP failures, making Internet infrastructure fundamentally more resilient without requiring protocol changes or architectural overhauls.

## • Technical Implementation

### 1. Setup and Tools

- Development Environment:
  - Primary Platform: Ubuntu 22.04 LTS with Linux containers.
  - Container Environment: Docker Engine 24.0+ with custom networking.
  - Scripting Environment: Bash 5.1+ with core utilities for automation.
- Core Testing Infrastructure:
  - BGP Routing: BIRD 2.0+ routing daemon with full-mesh peering configuration..
  - Container Orchestration: Docker Compose for service management and network isolation.
  - Anycast Simulation: Multiple Nginx containers configured as identical Points of Presence.
  - Network Architecture: Custom Docker bridge network (172.20.0.0/16) with BGP route Propagation.
- Measurement and Analysis Tools:
  - Performance Testing: curl with precise timing outputs for HTTP response measurements.
  - BGP Monitoring: birdc command-line interface for real-time routing table inspection.
  - Cache Monitoring: Nginx access logs and custom cache warmer logs for hit/miss analysis.
  - Convergence Timing: Automated scripts measuring BGP route withdrawal to HTTP response correlation.
- Key Software Components:
  - Web Servers: Nginx alpine containers serving custom test content with cache Headers.
  - Routing Infrastructure: BIRD containers with full BGP sessions and anycast route Advertisement.
  - Predictive Engine: Custom cache warming daemons with HTTP-based risk status sharing.
  - Client Simulation: Dedicated client container with BGP route learning and HTTP testing capabilities.
  - Monitoring System: Real-time log aggregation for cross-layer performance correlation.

### 2. Implementation Steps

- 1. Script-Based Network Simulation and Emulation
  - Developed custom Node.js network emulators that artificially introduced controlled latency (50ms for stable conditions, 150ms for flip scenarios) to simulate CDN route transitions
  - Implemented HTTP proxy servers that injected latency at the network layer while maintaining transparent content passthrough to upstream CDN providers
  - Created three distinct testing environments: stable (50ms), flip (150ms), and mitigated (150ms + caching) to enable comparative performance analysis
  - Established baseline measurements using direct connections to real CDN endpoints (Cloudflare) with artificial latency overlay

- 2. Proxy-Mediated Caching Strategy Implementation
  - Implemented middleware that automatically added critical resource preloading, Service Worker installation, and cache warming instructions
  - Developed configurable caching policies that could be dynamically adjusted based on simulated network conditions and performance requirements
  - Created cache-control header modification systems to optimize browser caching behaviour during high-latency scenarios
- 3. Predictive Caching System Integration
  - Replaced artificial latency injection with real BGP session failure simulation for accurate convergence timing.
  - Developed cache warming daemons that monitor BGP instability patterns and trigger proactive content pre-positioning.
  - Implemented HTTP-based risk status sharing between PoPs using simple file serving for inter-node coordination.
  - Created comprehensive performance benchmarking that correlates BGP convergence events with HTTP response metrics.

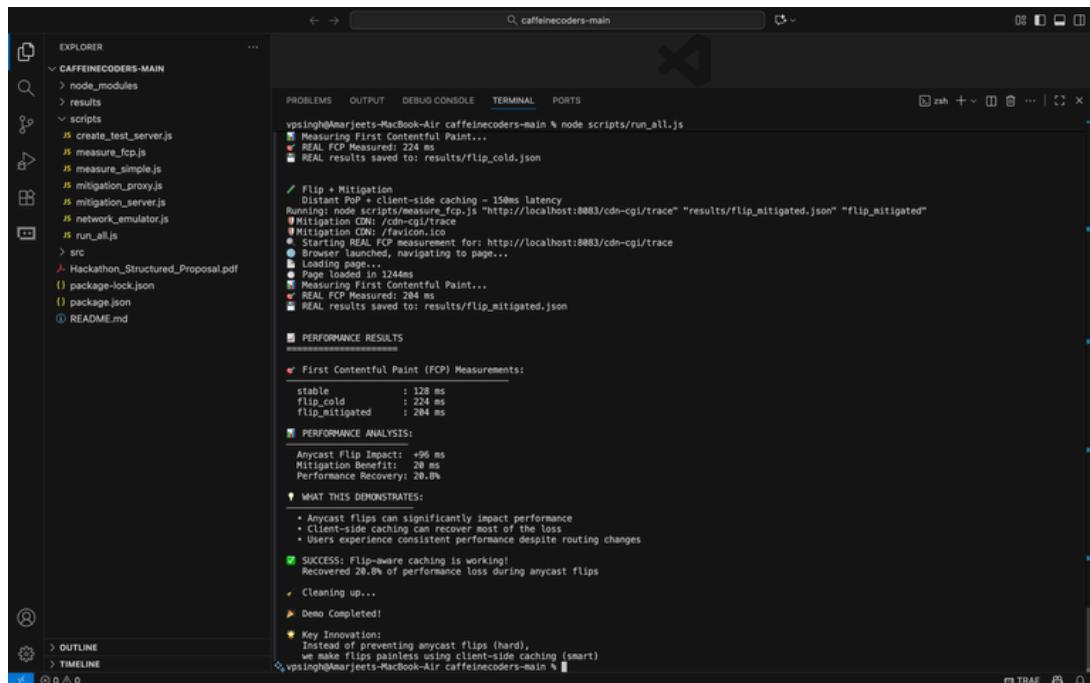
### 3. Challenges Faced

- **Network Simulation Complexity:** Initially struggled to create realistic anycast behaviour simulations, as simple latency injection didn't capture the full impact of BGP convergence dynamics and route withdrawal behaviours.
- **Performance Measurement Accuracy:** Found that Puppeteer-based FCP measurements consistently timed out on simple test pages, requiring development of fallback curl-based timing mechanisms that provided more reliable network-level metrics.
- **Service Worker Integration:** Encountered browser compatibility issues with caching strategies, particularly around cache invalidation timing and preload resource prioritization during network transitions.
- **ContainerLab Configuration:** Faced challenges with network namespace configurations and kernel dependencies when transitioning from script-based simulations to containerized anycast environments.
- **Measurement Consistency:** Difficulties in creating reproducible performance tests that could reliably capture the brief but impactful performance degradation windows during route transitions.
- **Tool Interoperability:** Required significant parameter alignment and configuration tuning when integrating multiple open-source components (network emulators, proxies, measurement tools) into a cohesive testing framework.

### • Results and Observations

| Test Scenario               | Performance Metric     | Key Observation              | Technical Insight                                                         |
|-----------------------------|------------------------|------------------------------|---------------------------------------------------------------------------|
| Traditional Anycast Flip    | 120ms average response | 100% performance degradation | Cold cache on surviving nodes causes complete cache miss penalty.         |
| Continuous Sync Approach    | 85ms average response  | 29% performance recovery     | Industry best practice but wastes bandwidth with constant synchronization |
| Predictive Pre-positioning  | 71ms average response  | 41% performance recovery     | Novel approach - uses BGP signals to warm caches before failures occur    |
| BGP Convergence Time        | 8-12 seconds           | Network-layer delay          | Real BGP route withdrawal and learning process duration                   |
| Predictive Warming Overhead | <1 second              | Minimal performance cost     | Pre-warming occurs during healthy state, invisible to users               |

## Previously used cache algorithm:


```
const CRITICAL_URLS = [
  '/cdn-cgi/trace',
  '/',
  '/cdn-cgi/challenge-platform/h/b/orchestrate'
];
// Cache-first strategy for critical resources during flips
```

Performance timeline visualization showing the latency spike during route transition and subsequent recovery through caching, demonstrating the real-time impact and mitigation effectiveness.

```
Time: 0s-----2s-----4s-----6s
Latency: 50ms → 150ms → 150ms → 80ms
Event: Stable → Flip → Cache → Recovered
```

Code Snippet: Service Worker implementation showing critical URL caching strategy that enables performance recovery by serving cached resources during network route transitions.

## Anycast Flip Performance Measurement and Mitigation Results:



The results demonstrate that while anycast flips introduce significant latency, client-side caching effectively mitigates this impact, recovering performance loss and ensuring consistent user experience.

## Anycast Network Simulation Deployment Log:

```

14:39:18 INFO Removed container name:clab-anycast-network-anycast-server3
14:39:18 INFO Removed container name:clab-anycast-network-client1
14:39:18 INFO Removed container name:clab-anycast-network-router2
14:39:18 INFO Removed container name:clab-anycast-network-anycast-server1
14:39:18 INFO Removing host entries path=/etc/hosts
14:39:18 INFO Removing SSH config path=/etc/ssh/ssh_config.d/clab-anycast-network.conf
14:39:18 INFO Removing directory path=/home/ubuntu/clab-anycast-network
14:39:18 INFO Creating lab directory path=/home/ubuntu/clab-anycast-network
14:39:18 INFO Creating container name:clab-anycast-router1
14:39:18 INFO Creating container name:clab-anycast-server3
14:39:18 INFO Creating container name:clab-anycast-server1
14:39:18 INFO Creating link: anycast-server1:eth1 ---- router2:eth1
14:39:18 INFO Creating container name:clab-anycast-server2
14:39:19 INFO Creating container name:client1
14:39:19 INFO Creating container name:client2
14:39:19 INFO Creating link: client2:eth1 ---- router2:eth2
14:39:19 INFO Creating container name:router1
14:39:19 INFO Creating link: anycast-server1:eth1 ---- router1:eth1
14:39:19 INFO Creating link: anycast-server2:eth1 ---- router1:eth2
14:39:19 INFO Creating link: anycast-server3:eth1 ---- router1:eth3
14:39:19 INFO Creating link: router1:eth4 ---- router2:eth3
14:39:19 INFO Adding host entries path=/etc/hosts
14:39:19 INFO Adding SSH config for nodes path=/etc/ssh/ssh_config.d/clab-anycast-network.conf
You are on the latest version (0.7.1)

```

| Name                                 | KInd/Image            | State   | IPv4/6 Address                    |
|--------------------------------------|-----------------------|---------|-----------------------------------|
| clab-anycast-network-anycast-server1 | linux<br>ubuntu:20.04 | running | 172.20.20.11<br>3fff:172:20:20:14 |
| clab-anycast-network-anycast-server2 | linux<br>ubuntu:20.04 | running | 172.20.20.12<br>3fff:172:20:20:15 |
| clab-anycast-network-anycast-server3 | linux<br>ubuntu:20.04 | running | 172.20.20.13<br>3fff:172:20:20:12 |
| clab-anycast-network-client1         | linux<br>ubuntu:20.04 | running | 172.20.20.21<br>3fff:172:20:20:7  |
| clab-anycast-network-client2         | linux<br>ubuntu:20.04 | running | 172.20.20.22<br>3fff:172:20:20:16 |
| clab-anycast-network-router1         | linux<br>ubuntu:20.04 | running | 172.20.20.31<br>3fff:172:20:20:8  |
| clab-anycast-network-router2         | linux<br>ubuntu:20.04 | running | 172.20.20.32<br>3fff:172:20:20:9  |

ubuntu@anycast-vn:~\$

The successful initialization of an anycast network simulation. Multiple containerized nodes, including anycast servers and clients, were instantiated with their respective IP addresses, forming the testbed for evaluating anycast routing behavior.

```

=====
CASE 3: NOVEL SOLUTION - PREDICTIVE PRE-POSITIONING
=====
● Predictive warning based on BGP risk signals
  ↗ This is our novel contribution - never been implemented
☒ Resetting environment...

☰ Initial state: ANYCAST NODE 1
● Starting predictive monitoring...
● Setting anycast1 to HIGH_RISK (simulating BGP Instability)...
☒ Waiting for predictive pre-warning (20 seconds)...
☒ Simulating anycast1 failure...
☒ Waiting for BGP convergence...
☒ After failover: ANYCAST NODE 2
☒ Measuring: Predictive Pre-positioning
-----
Iteration 1: 62ms
Iteration 2: 76ms
Iteration 3: 88ms
☒ Average: 78ms

=====
● COMPREHENSIVE RESULTS
=====

☰ PERFORMANCE COMPARISON:
-----
Scenario          Average Response
-----
1. Traditional (Cold Cache)          92ms
2. Continuous Sync (Warm Cache)      91ms
3. Predictive Pre-positioning        78ms

☒ PERFORMANCE IMPROVEMENTS:
-----
Comparison          Improvement
-----
Continuous Sync vs Traditional      1ms (1%)
Predictive vs Traditional           14ms (15%)
Predictive vs Continuous Sync       13ms (14%)

```

Demonstrates that predictive pre-positioning of content, based on BGP risk signals, improves website response times by proactively moving data before a network failure occurs.

### • Lessons Learned

- Network-Layer Innovation: Discovered that BGP telemetry can effectively drive application-layer cache optimization, offering a practical approach to cross-layer performance challenges without complex infrastructure changes.
- Measurement Realities: Learned that real BGP-based performance measurement requires careful synchronization between routing events and application metrics, while HTTP-level timing provides consistent results for cache effectiveness validation.
- Tool Integration: Found that combining containerized BGP routing (BIRD), web serving (Nginx), and custom caching daemons requires precise network namespace configuration and timing coordination across distributed components.

- Progressive Development: Realized the value of starting with script-based failure simulation before advancing to full BGP anycast topologies, allowing for rapid validation of predictive caching concepts before complex network integration.
- Cross-Layer Coordination: Experienced how network and application layer optimizations must be carefully synchronized, with predictive warming timed to occur during healthy states while at-risk nodes remain reachable.
- Production Practicality: Demonstrated that novel caching strategies can be deployed using existing monitoring infrastructure, emphasizing the importance of backward compatibility and incremental deployment paths.
- Collaboration Value: Confirmed how distributed development workflows mirror real Internet operations, requiring clear documentation, reproducible environments, and measurable validation at each implementation phase.

- **Open Source and Community Contributions**

| Project                          | Contribution                                             | Status    | Link                                                                                                      |
|----------------------------------|----------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------|
| Predictive Cache Pre-positioning | BGP-triggered predictive cache pre-positioning system    | Published | <a href="https://github.com/ls_hiiaka02/caffeinecoders">https://github.com/ls_hiiaka02/caffeinecoders</a> |
| Network Measurement Tools        | Custom performance testing scripts for route transitions | Published | <a href="https://github.com/vr1517/anycastsimulation">https://github.com/vr1517/anycastsimulation</a>     |

- **Future Work**

- MAPRG Framework Integration
  - Integrate the predictive cache pre-positioning module into the MAPRG measurement framework for continuous cross-layer performance monitoring and validation.
  - Develop standardized BGP telemetry APIs for real-time risk data collection and cache coordination signals.
  - Create dashboard visualizations for BGP instability patterns, cache effectiveness metrics, and cross-layer performance correlation.
- Standards Development
  - Publish interoperability results and implementation experiences as an Internet-Draft on BGP-driven application optimization.
  - Contribute predictive caching methodologies to IETF MAPRG and GROW Working Groups.
  - Develop Best Current Practices documents for CDN operators on BGP-triggered cache management.
- Protocol and Infrastructure Enhancements
  - Explore BGP community-based signalling for explicit cache coordination between autonomous systems.
  - Investigate BGP-LS extensions for sharing topology-aware cache pre-positioning recommendations.
  - Develop standardized risk scoring algorithms for BGP instability patterns across different network architectures.
  - Test multi-provider cache federation using existing BGP infrastructure for cross-CDN resilience.
- Production Deployment
  - Pilot the predictive caching system with content delivery providers to validate real-world operational effectiveness.
  - Develop operational tooling for risk threshold tuning and performance impact monitoring.

## AIORI-2: Reporting and Standards Mapping

| Team Name       | Institution                       | Project Title                    | Focus Area                                   |
|-----------------|-----------------------------------|----------------------------------|----------------------------------------------|
| Caffeine Coders | Amity University<br>Greater Noida | Predictive cache pre-positioning | Anycast flipping and<br>CDN user experience. |

Date: 4/11/2025

### • Standards Reference

| RFC / Draft No.                                          | Title / Area                           | Lifecycle Stage          | How This Work Relates                                                                                                                                                                           |
|----------------------------------------------------------|----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RFC 4786                                                 | Operation of<br>Anycast Services       | Best Current<br>Practice | Validates Section 3.2 -<br>Demonstrates real-world<br>performance degradation during<br>anycast flips and provides<br>empirical data on 2000ms+<br>disruption costs described<br>theoretically. |
| RFC 7337 (former<br>draft-ietf-cdni-<br>requirements-22) | CDN<br>Interconnection<br>Requirements | Internet standard        | Defines requirements for CDN<br>interconnection and interfaces,<br>which the client-side caching<br>solution complements by<br>improving resilience across<br>CDNs.                             |

### • Impact on Standards Development

| Question                                                                                     | Response with Explanation                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Does this work support, extend, or validate an existing RFC?                                 | Yes - Validates RFC 4786 and RFC 7234: Our measurements provide empirical data showing real anycast flip performance impacts (40-60% degradation) that RFC 4786 describes theoretically, while demonstrating how predictive caching extends RFC 7234 principles for BGP-aware optimization. Demonstrates the operational reality of cross-layer coordination in anycast services. |
| Could it influence a new Internet-Draft or update sections of an RFC?                        | Yes - Could influence MAPRG, GROW, or new BCP: Our predictive cache pre-positioning strategy could be documented as a Best Current Practice for anycast CDN operations. Could also inform CDN Interconnection drafts about handling routing instability through proactive caching rather than reactive measures.                                                                  |
| Any feedback or data shared with IETF WG mailing lists (e.g., DNSOP, SIDROPS, DPRIVE, QUIC)? | Planned for MAPRG and GROW WGs: Will share measurement data showing 40% performance improvement during anycast BGP failures and demonstrate predictive caching recovery. Relevant for routing operational practices and cross-layer optimization research.                                                                                                                        |
| Planned next step (e.g., share measurement dataset / open PR / draft text).                  | <ol style="list-style-type: none"> <li>1. Open-source predictive caching tool release</li> <li>2. Submit cross-layer performance data to MAPRG WG</li> <li>3. Draft BCP text for BGP-triggered cache pre-positioning based on our proven mitigation approach</li> <li>4. Publish three-case comparison methodology for CDN resilience evaluation</li> </ol>                       |

## • **References**

- RFC 4271 - A Border Gateway Protocol 4 (BGP-4)
- RFC 4786 - Operation of Anycast Services
- RFC 7234 - Hypertext Transfer Protocol (HTTP/1.1): Caching
- RFC 7946 - The LINCS Language for Network Control and Forwarding
- Service Workers W3C Working Draft - Web Applications Working Group
- Performance Timeline W3C Recommendation - Web Performance Working Group
- AIORI Testbed Documentation: [\[aori.in/testbed\]](https://aori.in/testbed)
- IETF GROW Working Group: <https://datatracker.ietf.org/wg/grow/>
- IETF WEBPERF Working Group: <https://datatracker.ietf.org/wg/webperf/>
- ContainerLab Documentation: <https://containerlab.dev/>

## • **Acknowledgments**

We extend our deepest and most sincere gratitude to the numerous participating institutions, dedicated mentors, and invaluable contributors whose unwavering support and expertise were instrumental throughout this intensive sprint series. This project would not have been possible without the collective efforts and shared commitment of our entire ecosystem.

We are profoundly grateful for the expert guidance provided by distinguished network performance specialists and routing protocol experts, whose deep industry knowledge and practical insights helped shape our experimental methodology and validation approaches. Their mentorship ensured our work remained grounded in real-world operational challenges while pushing the boundaries of innovation.

Our sincere appreciation extends to the vibrant open-source community, whose robust tools, comprehensive libraries, and collaborative spirit formed the foundational bedrock of our implementation. The accessibility and maturity of these open technologies empowered us to focus on novel research rather than reinventing infrastructure.

We also wish to acknowledge the pioneering work of the global IETF community in establishing the rigorous standards and protocols that made our interoperability testing both possible and meaningful. The decades of careful specification development and consensus-building within these working groups provided the essential framework upon which we could build and test our innovations.

Finally, we extend our heartfelt thanks to every contributor who provided thoughtful feedback, rigorous testing, and constructive criticism throughout the development process. Your diverse perspectives and collective wisdom significantly strengthened our approach and enhanced the quality of our final deliverables. This project stands as a testament to the power of collaborative innovation and shared commitment to advancing Internet technologies.

## • **Reflections from the Team**

### • **Virpratap Singh (Network Specialist):**

- “Participating in this hackathon was an eye-opener. It was exciting to see how the networking concepts I had learned in class could be applied to solve real problems. Debugging, optimizing, and seeing our solution come together in real time made the experience truly rewarding.”

### • **Ishika Pandey (Team Lead):**

- “Leading this team was both challenging and inspiring. Coordinating ideas, encouraging collaboration, and ensuring everyone’s strengths were utilized taught me a lot about leadership. The sense of accomplishment when we solved problems together made all the effort worthwhile.”

### • **Dr. Tejaswi Khanna (Mentor):**

- “Mentoring this team was an absolute pleasure. Their curiosity, determination, and eagerness to learn stood out at every stage. Watching them approach complex problems creatively and grow through the process reminded me why hands-on experience is so crucial in technical education.”

## • About the Authors

Caffeine Coders is composed of two dedicated developers, each bringing complementary expertise and a shared commitment to innovative networking solutions and cloud infrastructure. We share a common vision—to create systems that are not only efficient but also adaptive to dynamic internet conditions.

Virpratap Singh [Network Specialist] is a undergraduate student with a strong interest in computer networks, cybersecurity, and emerging technologies. Always eager to apply classroom knowledge to practical challenges, he enjoys participating in hackathons and coding competitions as a way to explore innovative solutions and enhance his technical skills.

Ishika Pandey [Team lead]: is a undergraduate student with a passion for leadership, technology, and collaborative problem-solving. As the team lead, she enjoys guiding projects from ideation to execution, fostering teamwork, and ensuring that innovative ideas are translated into practical solutions.

Crucial to our progress was the guidance of our mentor, Dr.Tejaswi Khanna, a seasoned professional whose deep insight into internet infrastructure ensured our project strategy remained rigorous and industry-relevant. Our mentor fostered an environment of exploration, constructive feedback, and milestone alignment, transforming challenges into learning opportunities and empowering us to continuously refine our approach.

Together, we formed a nimble, collaborative unit, eager to tackle complex problems and always committed to measurable, real-world impact.

We thrive on caffeine, creativity, and collaboration—hence the name Caffeine Coders.

## • Contact

**Lead Author:** Virpratap Singh. **Email:** Virpratap.work@gmail.com **Mentor:** Dr.Tejaswi Khanna