
QR-to-Database Real-Time
Interaction System

Introduction

Executive Summary

Overview

Sprint Methodology

Activities and Implementation

Open Source Contributions

Technical Implementation

07Results and Observations

Open Source and Community
Contributions

Standards Reference

Impact on Standards Development

Introduction

02
02
02

RFC-Open Source Contribution
Report

03
03
04

Technical Blog Series & Dev
Diaries

06

09

Reporting and Standards
Mapping

11
11

About the Authors

Acknowledgement & References

Conclusion

12
12

Blog link

TABLE OF CONTENTS

Team Name:

Members:

Problem Statement:

Shaik Raheema (Student)

Sagar L (Student)

Veena G(Professor)

Wi-Fighters

Name Designation Institution

Shaik Raheema Student
Vemana Institute of

Technology

Sagar L Student
Vemana Institute of

Technology

Veena G Professor
Vemana Institute of

Technology

Theme: Implementation and Testing of Selected Internet-Drafts / RFCs using AIORI
Testbed
Focus Areas: QR-to-Database Real-Time Interaction System (PS-11)
Organized by: Advanced Internet Operations Research in India (AIORI)
Collaborating Institutions: Vemana institute of technology
Date:11/2025
Prepared by:

Introduction

Contact: wififighters@gmail.com

 Team Wi-Fighters contributed to the implementation and testing of a Real-Time QR-to-
Database Interaction System guided by ISO/IEC 18004 for QR encoding with Secure Scan
Logging & Data Verification CWT (RFC 8392), and IETF security standards including JWT (RFC
7519) and OAuth 2.0 (RFC 6749) for secure token-based authentication and controlled
organizer access. Our approach replaces manual and multi-step event check-in workflows
with an automated process, enabling improved accuracy, speed, and reliability in real-world
attendance and entry management scenarios.
 The implementation includes secure short-lived QR token generation, automated mobile
submission from the scanner, duplicate-scan prevention, and a Django-based deployment
integrated with PostgreSQL and real-time dashboard updates via Server-Sent Events (SSE)
under the AIORI testbed environment. This ensures seamless synchronization between the
user's device, backend server, and organizer interface without requiring page refresh.
 Our contribution provides implementation feedback to IETF working groups on secure QR
authentication workflows, token expiry and replay protection mechanisms, and practical
considerations for real-time event logging and streaming interfaces in operational
deployments.

Executive Summary

Overview
 The Real-Time QR-to-Database Interaction System by Team Wi-Fighters is a high-security
event management framework. Built on ISO/IEC 18004 and IETF standards (JWT/OAuth 2.0), it
automates check-ins using secure, short-lived QR tokens and CWT (RFC 8392) for verified
logging.
 The Django and PostgreSQL architecture features duplicate-scan prevention and real-time
dashboarding via Server-Sent Events (SSE). Tested in the AIORI environment, this project
validates secure authentication workflows and replay protection, providing the IETF with
critical implementation feedback on high-speed, reliable entry management and operational
event logging.

mailto:wififighters@gmail.com

Focus Area
Relevant RFCs /

Drafts
Open Source

Reference
AIORI Module Used

QR Code Encoding &
Session Binding

ISO/IEC 18004
qrcode / segno

Python QR libraries
AIORI Application
Services Testbed

Token-based
Authentication &

Authorization

JWT (RFC 7519),
OAuth 2.0 (RFC

6749)

PyJWT, Google
OAuth Client

AIORI Authentication &
Identity Module

Real-Time Event
Streaming

Server-Sent Events
(EventSource API)

Django-SSE,
EventSource.js

AIORI Realtime
Communication

Module

Secure Data Logging &
Verification

CWT (RFC 8392),
REST API Best

Practices

Django REST
Framework +
PostgreSQL

AIORI Secure Data
Processing Module

Date Activity Description Output / Repository

12/10/2025 –
15/10/2025

Sprint 1: System
Setup &

Environment
Configuration

Configured
Django project,

PostgreSQL
database, and

base
environment.

https://github.com/Veenagopal/AIORI-2-
HACKATHON-WI-FIGHTERS/tree/main/src

Objectives
Implement real-time QR session workflows following QR ISO/IEC 18004, JWT (RFC 7519),
OAuth 2.0 (RFC 6749), and secure scan verification using CWT (RFC 8392).
Build a secure two-way QR interaction system for session creation, mobile scan capture,
and live dashboard updates.
Use SSE for real-time data streaming without page refresh.
Maintain data integrity through token verification and duplicate scan prevention.
Improve and contribute to open-source tools for QR generation, decoding, and event-
stream communication.
Provide implementation insights and feedback to relevant IETF standardization efforts.
Strengthen local developer skills in secure authentication and real-time event systems.

Scope and Focus Areas

Sprint Methodology

 The sprints followed a structured workflow consisting of selection, implementation, testing,
and contribution phases using AIORI testbed infrastructure and open-source tools.

Workflow:
Standards selection (QR ISO/IEC 18004, JWT RFC 7519, OAuth 2.0 RFC 6749, SSE
EventStream).
QR session & database preparation for short-lived authentication.
Backend implementation using Django REST Framework and PostgreSQL.
Real-time dashboard deployment using Server-Sent Events (SSE).
Scan verification, token validation & duplicate detection testing.
Open-source documentation, repository updates & post-sprint reporting.

Activities and Implementation

https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/tree/main/src
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/tree/main/src

16/10/2025 –
20/10/2025

Sprint 2: QR
Session

Generation
Module

Implemented
QR model,

session
creation, expiry

logic, and
rendering.

https://github.com/Veenagopal/AIORI-
2-HACKATHON-WI-

FIGHTERS/blob/main/src/app/models.
py

21/10/2025 –
25/10/2025

Sprint 3: Scan
Processing &
Verification

Built scan APIs,
duplicate scan
detection, and
access logging.

https://github.com/Veenagopal/AIORI-
2-HACKATHON-WI-

FIGHTERS/blob/main/src/app/views.py

26/10/2025 –
30/10/2025

Sprint 4: Real-
Time Dashboard

(SSE)**

Added Server-
Sent Events for

live scan
updates on
dashboard.

https://github.com/Veenagopal/AIORI-
2-HACKATHON-WI-

FIGHTERS/blob/main/src/app/static/js/
sse-manager.js

31/10/2025 –
03/11/2025

Sprint 5:
Authentication

& Security Layer

Integrated
Google OAuth +

JWT session
validation.

https://github.com/Veenagopal/AIORI-
2-HACKATHON-WI-

FIGHTERS/tree/main/src/app

04/11/2025 –
05/11/2025

Sprint 6:
Analytics, CSV

Export & Poster
Download

Implemented
analytics charts,

CSV export,
event poster

rendering.

https://github.com/Veenagopal/AIORI-
2-HACKATHON-WI-

FIGHTERS/tree/main/src/app/static

05/11/2025
Final Sprint:

Documentation
& Submission

Final README,
usage guide,
architecture

notes,
demonstration

steps.

https://github.com/Veenagopal/AIORI-
2-HACKATHON-WI-

FIGHTERS/blob/main/README.md

Repository /
Project

Contribution Status Link

AIORI-2-
HACKATHON-
WI-FIGHTERS

Core
implementation of

QR session
workflows, scan

verification
pipeline, SSE real-
time dashboard,

organizer UI

Merged
https://github.com/Veenagopal/AIORI

-2-HACKATHON-WI-FIGHTERS

Results and Findings
Successfully implemented real-time QR session workflows with short-lived, event-
specific tokens.
Server-Sent Events (SSE) enabled instant dashboard updates without page refresh,
improving check-in response time.
Duplicate scan detection and QR expiry validation ensured data integrity during live
event testing.
Achieved consistent mobile interoperability across Android and iOS device scanners.
Identified that unstable network connectivity may cause delayed scan pushes —
mitigated by reconnect logic in SSE client.

Open Source Contributions

https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/models.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/models.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/models.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/models.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/views.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/static/js/sse-manager.js
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/tree/main/src/app
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/tree/main/src/app/static
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/tree/main/src/app/static
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/tree/main/src/app/static
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/README.md
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/README.md
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/README.md
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS

QR Session
Module

Dynamic QR
creation tied to

session validity &
expiration control Active

https://github.com/Veenagopal/AIORI
-2-HACKATHON-WI-

FIGHTERS/blob/main/src/app/models
py

Scan
Processing &
Verification

Logic

Added API routes,
duplicate scan

protection, access
logging Merged

https://github.com/Veenagopal/AIORI
-2-HACKATHON-WI-

FIGHTERS/blob/main/src/app/views.p
y

Real-Time SSE
Event Stream

Implemented
server-push scan
updates for live

dashboard
Merged

https://github.com/Veenagopal/AIORI
-2-HACKATHON-WI-

FIGHTERS/blob/main/src/app/static/j
s/sse-manager.js

Dashboard
Frontend

Templates

UI for scan list,
announcements,

and analytics
visualization Merged

https://github.com/Veenagopal/AIORI
-2-HACKATHON-WI-

FIGHTERS/blob/main/src/app/templa
tes/dashboard.html

Collaboration with IETF WGs
 Feedback and implementation insights were shared in alignment with relevant IETF Working
Groups, focusing on:

Secure QR-based authentication workflows using JWT (RFC 7519) and OAuth 2.0 (RFC
6749) (OAuth & SEC WGs)
Session trust, expiry, and replay-prevention models informed by discussions in W3C
WebAuthn
Real-time event delivery mechanisms, evaluating SSE vs WebSockets in line with
WebTransport WG considerations

Impact and Future Work
Support multi-event and multi-organizer environments.
Add WebAuthn / Passkey-based secure authentication.
Enable offline-capable PWA support for low-network scenarios.
Introduce analytics dashboards for attendance insights.
Release as an open-source toolkit for wider community adoption.

AIORI-2 Technical Blog Series & Dev Diaries
Lead Paragraph

 In the AIORI-2 Hackathon, our team developed QR-DB, a real-time QR-based interaction
system designed to automate event check-ins and attendance workflows. By applying Internet
standards such as QR ISO/IEC 18004, OAuth 2.0 (RFC 6749), and JWT (RFC 7519), the system
replaces manual scan-and-submit processes with secure, short-lived QR session tokens and
dynamic dashboard updates using Server-Sent Events (SSE). This improves efficiency, security,
and scalability across institutional and event environments.

Background and Motivation
 Traditional event attendance and access verification workflows often rely on manual
processes such as signing sheets, scanning IDs, or multi-step QR workflows (scan → open link →
form → submit). These approaches are time-consuming, prone to human error, and difficult to
scale at large events.

https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/models.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/models.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/models.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/models.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/views.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/views.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/views.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/views.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/static/js/sse-manager.js
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/static/js/sse-manager.js
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/static/js/sse-manager.js
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/static/js/sse-manager.js
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/templates/dashboard.html

Component Configuration / Tool

AIORI Node Environment AIORI Web Testbed

Framework Django (REST Framework)

Real-Time Communication Server-Sent Events (SSE)

Database PostgreSQL (NeonDB Cloud)

Frontend HTML, Tailwind CSS, Vanilla JavaScript

Authentication Google OAuth 2.0 + JWT-based tokens

Development OS Windows 10 + Visual Studio Code

Libraries Used qrcode, Django REST Framework, requests, jwt

 To address this, our team developed QR-DB, a real-time QR-to-Database interaction system
that automates identity capture and logging when a QR code is scanned. The system enables
short-lived QR sessions, automatically validates each scan, prevents duplicates, and updates
the organizer dashboard instantly using Server-Sent Events (SSE) without requiring page
refresh.
 This project aligns with key Internet standards:

ISO/IEC 18004 — QR Code structure and encoding
OAuth 2.0 (RFC 6749) — Secure delegated access
JWT (RFC 7519) — Compact, verifiable identity tokens
CWT (RFC 8392) — Lightweight token encoding for efficiency
EventStream / SSE — Real-time uni-directional server updates

 We chose this problem to contribute to the modernization of digital check-in infrastructure
in academic, corporate, and event-based systems. Our background in web development and
authentication frameworks enabled us to translate standards into a deployable, real-world
workflow.

Technical Implementation
 1. Setup and Tools

2. Implementation Steps

QR Session Creation
Designed a session model with expiry timestamps (minutes | hours | days | custom).
Generated QR symbols embedding secure session identifiers.

Scan & Verification Pipeline
The mobile device scans the QR → opens pre-encoded link → sends payload to server.

Test Metric Observation Note

Scan → Dashboard
latency ~150–300 ms Updates appear near-instant

on the organizer dashboard
Powered by SSE

stream

Duplicate scan
detection

100% caught in
tests

Repeated scans flagged and
not re-inserted

DB uniqueness +
token checks

Session expiry
enforcement Time-bound tokens Expired QR tokens

consistently rejected
Server-side time

authority

Cross-device
behavior

Android/iOS,
Chrome/Safari

Stable redirects and
submissions

Universal link
format

CSV export & logs Full event history Clean, normalized records
for audit

Ready for
reporting

Announcement
broadcast Live push Messages reach active

sessions instantly SSE fan-out stable

Server verifies:
Token authenticity (JWT/CWT)
Session validity
Duplicate scan attempts

Real-Time Dashboard Using SSE
Dashboard subscribes to a /events/stream/ endpoint.
Each successful scan triggers an instant push update, displayed without refresh.

Dashboard Interaction Features
Live scan list
Duplicate & expired scan notifications
Broadcast announcement messages
CSV export of attendance records
Event QR poster auto-generation

 3. Challenges Faced

When we first tested the system on different phones, we noticed that some QR scanner
apps would open the link directly, while others only showed the text without redirecting.
We solved this by testing multiple scanning apps and choosing a link format that works
consistently across devices.
During real-time updates, the dashboard would sometimes stop receiving new scan
events if the network connection was weak. We fixed this by adding a reconnect
function that automatically restores the SSE stream instead of requiring a page refresh.
We initially observed duplicate scan entries when two fast scans happened back-to-
back. To prevent this, we added a unique constraint at the database level so each scan is
recorded only once per session.
The QR expiry time behaved differently on some devices because of local time settings.
To fix this, we made the server the single source of truth for expiration, instead of relying
on device time.
During testing, the dashboard UI became crowded when many scans arrived quickly.
We improved this by updating only the newest scan entry instead of refreshing the
entire list every time

Results and Observations
 Summary: QR-DB delivered reliable, secure, and fast real-time event check-ins with instant
dashboard updates and strong duplicate/expiry handling.

The website look:

Figure 1: Secure Login Screen with Google OAuth access restricted to approve organizer accounts.

Figure 2: Allowed Organizer Management Interface showing add/remove controls for authorized email accounts.

Figure 3: Login Attempt Audit Log showing authorized and unauthorized dashboard access attempts with timestamp
records.

Project Contribution Status Link

QR-DB (Main
Repository)

End-to-end QR
session + scan

verification + live
dashboard

Merged https://github.com/Veenagopal/AIORI-2-
HACKATHON-WI-FIGHTERS

QR Session
Model & Expiry

Time-bound
session schema,
validity checks

Merged
https://github.com/Veenagopal/AIORI-2-

HACKATHON-WI-
FIGHTERS/blob/main/src/app/models.py

Figure 4: QR Session View prior to participant scans, showing session metadata and validity timer.

Figure 5: Active QR Session Dashboard displaying live scan events, duplicate-scan alerts, and
participant engagement graph.

Lessons Learned
Server-side token expiry and replay prevention is essential—never trust device time.
SSE is simpler than WebSockets for one-way live updates; add reconnect + heartbeat for
resilience.
Different mobile QR apps behave differently; universal link handling smooths redirects.
DB-level idempotency (unique constraints + atomic writes) stops race-condition
duplicates.
Incremental UI updates beat full refreshes during burst scan scenarios.

Open Source and Community Contributions

https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/models.py

Scan Processing
& Views

Submission
endpoints,
duplicate

prevention,
responses

Merged
https://github.com/Veenagopal/AIORI-2-

HACKATHON-WI-
FIGHTERS/blob/main/src/app/views.py

SSE Event
Stream Client

Real-time
dashboard

updates without
reload

Merged

https://github.com/Veenagopal/AIORI-2-
HACKATHON-WI-

FIGHTERS/blob/main/src/app/static/js/sse-
manager.js

Organizer
Dashboard
Templates

Live scans list,
alerts, analytics

hooks
Merged

https://github.com/Veenagopal/AIORI-2-
HACKATHON-WI-

FIGHTERS/tree/main/src/app/templates

Facial Recognition + QR Hybrid Check-ins:
Combine QR verification with optional face recognition for high-security workshops
or exams, ensuring the person scanning is the actual registered participant.

Geo-Fenced Scan Validation:
Allow QR scans only within a predefined physical area (e.g., campus/event zone) to
prevent remote misuse or unauthorized off-site check-ins.

Multi-Device Sync Awareness:
Detect and notify the organizer if a single user attempts to scan from multiple
devices, helping prevent attendance proxying.

Encrypted Attendance Ledger with Audit Trail:
Store logs in a tamper-proof hashed chain (block-record) to ensure attendance
entries cannot be modified or deleted post-event.

QR Rotation Mode (Continuously Regenerating QR Codes):
Regenerate QR codes every X seconds automatically — similar to WhatsApp Web
login — reducing screenshot sharing misuse.

Offline Pop-Up Mode for Large Events:
Build a local network broadcast server where devices scan and sync later when
Internet is restored — useful in auditoriums, fests, open grounds.

Integration with NFC / RFID:
Provide an optional fallback for participants with NFC student ID cards / badges for
faster check-in in repeat events.

Analytics-Based Smart Alerts:
Trigger alerts when unusual patterns occur — for example:

too many scans in a short time
repeated attempts from same device
suspicious time-shift check-ins

Team Name Institution Project Title Focus Area

Wi-Fighters
Vemana

Institute of
Technology

QR-DB: Real-Time QR-to-
Database Secure

Interaction System

Secure Authentication &
Real-Time Event Check-in

Workflow

Future Work

AIORI-2: Reporting and Standards Mapping

Date: 05/11/2025

https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/views.py
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/blob/main/src/app/static/js/sse-manager.js
https://github.com/Veenagopal/AIORI-2-HACKATHON-WI-FIGHTERS/tree/main/src/app/templates

RFC / Standard
No. Title / Area Lifecycle Stage How This Work Relates

ISO/IEC 18004
QR Code bar code

symbology
International

Standard

Encodes session identifiers
within QR symbols used at

check-in points

RFC 6749
OAuth 2.0

Authorization
Framework

Internet
Standard

Organizer authentication and
delegated authorization

RFC 7519
JSON Web Token

(JWT)
Internet

Standard
Short-lived tokens for session

validation and replay prevention

RFC 8392
CBOR Web Token

(CWT)
Internet

Standard
Optional compact token format

for constrained payloads

EventStream
(SSE)

Server-Sent Events Living Standard
Real-time dashboard updates

without page refresh

Question Response with Explanation

Does this work support,
extend, or validate an
existing RFC?

Yes. It validates operational use of OAuth 2.0 (RFC 6749) and JWT
(RFC 7519) for short-lived, event-scoped tokens; demonstrates
practical expiry/replay protections.

Could it influence a new
Internet-Draft or update
sections of an RFC?

Potentially. Field experience suggests guidance for token TTL,
idempotent logging, and SSE resiliency (reconnect/heartbeat) in
real-time event systems.

Any feedback or data
shared with IETF WG
mailing lists?

Not yet shared publicly; notes prepared for OAuth / SEC and
WebTransport communities regarding QR session design and SSE
vs WebSocket trade-offs.

Planned next step
Open-source packaging of QR-DB, publish deployment guide, and
share implementation notes with relevant WGs; evaluate
WebAuthn alignment.

1. Standards Reference

2. Impact on Standards Development

References
ISO/IEC 18004 — QR Code specification
RFC 6749 — OAuth 2.0 Authorization Framework
RFC 7519 — JSON Web Token (JWT)
RFC 8392 — CBOR Web Token (CWT)
Server-Sent Events (EventSource) — HTML Living Standard (WHATWG)
Django & Django REST Framework documentation
AIORI Testbed — aiori.in
PostgreSQL / NeonDB Documentation – Persistent and scalable scan log storage
Google Identity Services – Secure organizer login and access control
Python Libraries Used: qrcode, jwt, psycopg2, requests, Pillow, pandas
Frontend Libraries & Tools: HTML, TailwindCSS, Vanilla JavaScript
AIORI Testbed Documentation: Infrastructure and standards-oriented environment
inspiration
VS Code & GitHub – Development, control, and open-source repository collaboration

Reflections from the Team
Shaik Raheema (Team Member 1):

 “Working on this project helped me understand how real-time authentication systems
and secure access control work in practice. Implementing the QR-based check-in flow gave me
hands-on experience with OAuth, token handling, and dashboard-level permissions.”

Sagar L (Team Member):
 “Designing the backend logic and managing database consistency taught me the
importance of clean model structure and event logging. Ensuring that duplicate scans, expired
sessions, and SSE updates were handled correctly strengthened my understanding of system
reliability in live environments.”

Veena G (Mentor & Guide):
 “Mentoring this project showcased how applied learning in web technologies can
translate into meaningful automation solutions. The team demonstrated strong problem-
solving and adaptability while integrating UI, authentication, and real-time event visualization.
Their progress reflects both technical understanding and collaborative execution.”

Acknowledgments
 We would like to extend our sincere gratitude to all the individuals, mentors, and
organizations whose support made this project possible. First and foremost, we express our
heartfelt appreciation to Advanced Internet Operations Research in India (AIORI) for organizing
the AIORI-2 Hackathon and providing us with access to the AIORI testbed infrastructure, which
enabled us to design, experiment, and validate real-time, standards-based solutions in a
practical environment. The structure, guidance, and collaborative ecosystem created through
this hackathon played a crucial role in shaping the direction and execution of our project.
 We are deeply thankful to our mentor, Ms. Aindri Mukherjee, for her continuous
encouragement, insightful feedback, and strategic guidance throughout every phase of the
project. Her clarity of thought and problem-solving perspective inspired us to refine our
approach and deliver an effective and reliable solution. We also express our gratitude to our
guide, Ms. Veena, whose academic support, timely review sessions, and motivation
strengthened our confidence and helped us stay aligned with our goals. Their mentorship was
instrumental in transforming our concept into a functional, deployable system.
 We further acknowledge the contributions of the open-source community, whose tools,
frameworks, and documentation—including Django, PostgreSQL, Server-Sent Events (SSE),
JWT authentication libraries, and related web development resources—provided the
foundation upon which our implementation was built. Their collaborative innovation continues
to empower developers worldwide.
 We also recognize the relevance of discussions and standards shaped by IETF Working
Groups, particularly those focusing on authentication workflows, secure token models, and
real-time communication protocols, which guided our approach in designing a secure and
scalable QR-based interaction pipeline.

 Finally, we extend our appreciation to our team members and families, whose cooperation,
dedication, and unwavering support encouraged us throughout the hackathon. Their patience
during intensive development and testing sessions made this journey both meaningful and
memorable.
 Through this project, we not only gained technical expertise but also developed a strong
appreciation for the collaborative spirit, interdisciplinary learning, and standards-driven
development that underpin the evolution of modern Internet systems. We look forward to
applying this experience to future research, innovation, and real-world deployments.

Contact
Lead Author: Team Wi-Fighters
Email: shaikraheema2003@gmail.com and sagarlreddy2004@gmail.com
Mentor: Mrs. Veena G

