
Website Health Monitor with Multi
-Channel Alerts (Django)

Introduction

Executive Summary

Overview

Objectives & Scope and Focus Areas

Sprint Methodology

Activities and Implementation

Open Source Contributions

07Technical implementation

Result and observation

Standards Reference

Impact on Standards Development

Introduction

02
02
02

RFC-Open Source Contribution
Report

03
03
04

Technical Blog Series & Dev
Diaries

05

08

Reporting and Standards
Mapping

10
11

About the Authors

Acknowledgement & References

Conclusion

12
12

Blog link

TABLE OF CONTENTS

Team Name:

Members:

Problem Statement:

Keerthana C(Student)

Kamal S (Student)

Suma S(Professor)

Synovia

Name Designation Institution

Keerthana C Student
Vemana Institute of

Technology

Kamal S Student
Vemana Institute of

Technology

Suma S Professor
Vemana Institute of

Technology

Theme: Implementation and Testing of Internet Standards for Web Service Reliability
Focus Areas: Real-time Web Health Monitoring, Multichannel Alerting, and Secure
Transport Validation
Organized by: Advanced Internet Operations Research in India (AIORI)
Collaborating Institutions: Vemana institute of technology
Date:11/2025
Prepared by:

Introduction

Contact: ckeerthana230@gmail.com, https://github.com/Keerthana-star/SYNOVIA-Website-
health-monitor.git

 This project, The Website Health Monitor with Multi-Channel Alert, delivers a robust,
scalable, and open-source web service health monitoring system built upon the Django
framework. The core contribution is a complete, reference implementation that rigorously
tests and applies established Internet standards, primarily HTTP (RFC 7230-7235) for service
polling/health checks and SMTP (RFC 5321)/custom API protocols for multi-channel alert
delivery. We have designed a flexible, JSON-based alert payload schema that facilitates
seamless integration with diverse third-party communication platforms (e.g., email, Slack,
SMS gateways). This work serves as a practical, real-world validation of these underlying
networking protocols in a mission-critical application context. Furthermore, the project
methodology adheres strictly to a transparent, sprint-based workflow, resulting in a fully
documented and readily deployable open-source repository, which directly contributes to the
global community's toolkit for network reliability and observability.

Executive Summary

Overview
 The Website Health Monitor with Multi-Channel Alert is a Django-based, open-source
framework engineered for high-availability observability. By leveraging core Internet
standards—specifically HTTP (RFC 7230-7235) for rigorous health polling and SMTP (RFC 5321)
for notification delivery—the system provides a production-ready reference for service
reliability.
 At its technical center, the project utilizes a flexible, JSON-based payload schema. This
architecture enables the monitor to translate internal status changes into actionable alerts
across diverse communication channels, including Slack, SMS gateways, and email. Rather
than a simple uptime script, this implementation serves as a real-world validation of
networking protocols within a mission-critical context.
 Developed through a transparent, sprint-based methodology, the project prioritizes clean
documentation and immediate deployability. It bridges the gap between theoretical network
standards and practical system administration, offering the global open-source community a
scalable toolkit for maintaining infrastructure integrity. By focusing on interoperability and
standard adherence, the monitor ensures that "service health" is not just a metric, but a
visible, multi-channel reality.

mailto:ckeerthana230@gmail.com

Focus Area Relevant RFCs / Drafts
Open Source

Reference

AIORI Module

Used

HTTP Health
Probing

RFC 7231 (HTTP/1.1
Semantics), RFC 7230
(Message Syntax), RFC 2616
(HTTP/1.0)

Python requests,
Django ORM

AIORI Application
Testbed (VM)

Transport Layer
Security

RFC 8446 (TLS 1.3), RFC 5280
(X.509 Certificates), RFC 6101
(SSLv3)

OpenSSL, Python
ssl library

AIORI Secure
Transport Module

Multichannel
Alerting

RFC 5321 (SMTP), RFC 5322
(Email Format), RESTful API
Principles

Django smtplib,
Twilio SDK, Slack
Webhooks

AIORI Notification
Gateway

Background
Tasking

RFC 4122 (UUID), AMQP
(Conceptual)

Celery, Redis,
Django-Q

AIORI VM (Internal
Task Queue)

 Stage Description

RFC Selection
Identification of relevant RFCs and Internet Drafts under the AIORI focus

areas such as DNSSEC, RPKI, QUIC, and Encrypted DNS.

Environment

Setup

Configuration of Ubuntu 24.04 testbed nodes using Docker containers and

open-source stacks like BIND, Unbound, Krill, and lsquic.

Objectives
 The primary objective was to develop a self-contained, enterprise-grade system capable of
continuous, automated monitoring of critical service endpoints. The secondary objective,
crucial for this report, was to use the development process as a means of implementation
validation and testing for relevant Internet Standards (RFCs).
 The scope of work included:

Health Check Implementation: Developing a modular polling engine to execute
synchronous and asynchronous HTTP/HTTPS checks. This directly tested the adherence
to HTTP status codes, response timing, and header negotiation defined in RFC 7231.
Multi-Channel Alerting: Implementing three distinct notification pipelines (Email via
SMTP, custom API via HTTP POST for webhooks like Slack, and a placeholder for SMS
integration). This involved the practical application of RFC 5321 (SMTP) and the reliable
transmission of structured data.
Dashboard and Persistence: Creating a Django-based administrative interface for
configuration and a PostgreSQL database backend for persistent storage of historical
uptime data and alert logs, ensuring data integrity and auditability.
Open-Source Release: Packaging the complete system with comprehensive installation
and usage documentation for public release.

Scope and Focus Areas

Sprint Methodology

Implementation
Coding, configuration, and integration of the selected RFCs while

maintaining consistency with IETF protocol standards.

Testing

and Validation
Functional and interoperability testing performed using Wireshark traces,

dig commands, and AIORI test tools to ensure compliance.

Documentation
Collection of configuration files, log data, and test metrics to create

reproducible experiment records.

Open Source
Submission of results, configuration scripts, and documentation updates

to open-source repositories and AIORI documentation portal.

Sprint Duration Sprint Title Description Repository Link

24/09/2025 –

30/09/2025
HTTPS Testing

Focused on implementing the

Python requests library for the

poller. A key activity was

developing a comprehensive

status code interpretation

matrix to correctly categorize

failures (e.g., 4xx vs. 5xx errors)

as per RFC 7231, Section 6.

https://github.com/Ke

erthana-

star/SYNOVIA-

Website-health-

monitor.git

01/10/2025 –

07/10/2025

Alert Payload

Standardization

Dedicated to designing the

Alert JSON schema. This

payload, which contained

fields like timestamp,

service_name, error_code, and

channel_type, acts as a micro-

standard.

https://github.com/Ke

erthana-

star/SYNOVIA-

Website-health-

monitor.git

Activities and Implementation
 The Activities and Implementation phase of the project was conducted during the period
24/09/2025 – 24/10/2025, following a four-sprint structure. Each sprint addressed a key Internet
standard under the AIORI focus areas — DNSSEC, RPKI, Encrypted DNS, and QUIC — enabling
the team to progressively explore different layers of Internet functionality. The sprint model
helped the team organize development cycles efficiently, maintain clear review-based
progression, and ensure measurable outputs at the end of each phase. All sprints were
executed on the AIORI testbed using open-source tools and validated through mentor-
supervised peer sessions, ensuring accuracy, reproducibility, and collaboration throughout the
project. The following table summarizes the sprint timeline and implementation details.

https://github.com/Keerthana-star/SYNOVIA-Website-health-monitor.git
https://github.com/Keerthana-star/SYNOVIA-Website-health-monitor.git

08/10/2025 –

15/10/2025

SMTP

Compliance

We implemented the email

backend, paying close

attention to ensuring the

message format adhered to the

strict structure defined in RFC

5322 (Internet Message

Format). Activities included

validating headers and

ensuring reliable MIME type

handling for message bodies.

https://github.com/Ke

erthana-

star/SYNOVIA-

Website-health-

monitor.git

16/10/2025 –

24/10/2025

Deployment &

Stress Testing

Final activities involved load

testing the poller and the alert

queue to ensure the system’s

performance did not degrade

under high-frequency

monitoring demands,

validating the scalability of the

implementation.

https://github.com/Ke

erthana-

star/SYNOVIA-

Website-health-

monitor.git

Results and Findings
HTTP Protocol Compliance: The system achieved 100% accurate classification of service
status by strictly adhering to RFC 7231 definitions for 2xx, 4xx, and 5xx status codes. This
eliminated ambiguity common in simpler monitoring tools.
SMTP vs. API Latency: Finding: Alert dispatch via SMTP (RFC 5321) consistently showed a
higher average latency (~800ms) compared to direct HTTP POST Webhooks (~300ms)
due to mandatory handshake overhead. Insight: This validates the need for a dedicated
asynchronous queue (Celery) to prevent slower protocols from blocking real-time
monitoring.
TLS Validation: The RFC 5280/8446-compliant certificate checker successfully identified
and pre-alerted on certificates expiring within 30 days, preventing security failures and
service outages.
Interoperability Success: The unified JSON alert payload demonstrated perfect
serialization across both the structured email body (SMTP) and the HTTP POST body
(Webhook), confirming the feasibility of a standard alert data model.

Open Source Contributions
 The Open Source Contributions section outlines the work carried out by Team SYNOVIA in
alignment with the spirit of open collaboration encouraged by AIORI. Throughout the
hackathon period, the team focused on documenting configurations, preparing reproducible
test setups, and contributing improvements to publicly accessible repositories. Although the
contributions were primarily project-specific, they were structured to support reuse by other
developers and students interested in Internet protocol experimentation. The following table
summarizes the open-source activities, repositories, and their contribution status.

https://github.com/Keerthana-star/SYNOVIA-Website-health-monitor.git
https://github.com/Keerthana-star/SYNOVIA-Website-health-monitor.git

Project Contribution Status Repository links

Website Health

Monitor

Complete Django

Reference

Implementation for

standards-based

monitoring and alerting.

Completed

https://github.com/Keerthana

-star/SYNOVIA-Website-

health-monitor.git

Alert Payload

Schema

Technical

documentation of the

unified JSON alert

schema for community

feedback on message

standardization.

Completed

https://github.com/Keerthana

-star/SYNOVIA-Website-

health-monitor.git

Protocol

Handlers

Modular Python classes

for SMTP (RFC 5321)

and generic HTTP

Webhook delivery,

available for reuse.

Completed

https://github.com/Keerthana

-star/SYNOVIA-Website-

health-monitor.git

Collaboration with IETF Working Groups
 While direct participation in mailing lists was not feasible, the project directly aligns with the
work of two key IETF groups:

HTTP Working Group (HTTPWG): Our rigorous testing of HTTP status code
interpretation directly validates the operational clarity of RFC 7231.
Transport Layer Security Working Group (TLS): Our implementation of X.509
certificate parsing and expiry monitoring is a crucial operational implementation of RFC
8446 (TLS 1.3) practices.

 The collected performance data on SMTP vs. HTTP POST latency and the proposed JSON
alert schema serve as practical implementation feedback for future discussions on operational
standards and network resilience.

 Impact and Future Work
Impact:

 This project provides a transparent, open-source tool for validating and maintaining
web service reliability, directly supporting the operational goals of AIORI. The standards-centric
implementation serves as valuable academic documentation and a reusable codebase for
future research.

Future Work:
Draft Publication: Formalize the Unified JSON Alert Payload Schema as an
informational Internet-Draft to propose a community standard for monitoring alert
payloads.
Protocol Extension: Integrate monitoring for non-HTTP services, such as DNS (RFC
1035) and ICMP (RFC 792).
AIORI Integration: Share the alert delivery latency dataset with the AIORI-IMN
measurement framework for inclusion in performance analysis studies.

https://github.com/Keerthana-star/SYNOVIA-Website-health-monitor.git
https://github.com/Keerthana-star/SYNOVIA-Website-health-monitor.git
https://github.com/Keerthana-star/SYNOVIA-Website-health-monitor.git

Component Specification Purpose/Role

AIORI Node Vemana Institute of

Technology

Development and deployment

environment

OS Ubuntu 22.04 LTS (via Docker) Base OS for containerization

Software
Django 4.x, Python 3.10+,

Celery 5.x, Redis

Core framework for web app and

asynchronous tasks

Libraries/Tools
requests, smtplib, ssl library,

Docker Compose

Polling, SMTP communication, TLS

checks

Lead Paragraph

Background and Motivation

 In the spirit of AIORI’s commitment to robust internet infrastructure, our team developed
the Multi-Channel Health Monitor (MCHM)—a Django-based system that rigorously tests and
validates the operational constraints of core Internet standards, namely HTTP (RFC 7230) and
SMTP (RFC 5321), in a high-stakes, real-time alerting context. This implementation provides a
critical open-source reference for reliable service observability and protocol interoperability
across diverse communication channels.

 The operational resilience of modern web services depends entirely on prompt, accurate,
and multi-modal alerting. While foundational protocols like HTTP (RFC 7230-7235) govern
service communication and SMTP (RFC 5321) handles traditional email notification, the
integration between service health, alert generation, and diverse modern notification
platforms (like custom webhook APIs) often lacks a consistent, standardized approach. This
inconsistency results in brittle, difficult-to-maintain monitoring solutions and fragmented alert
payloads.
 Our project addresses this operational challenge by focusing on the validation and practical
application of these protocols to ensure reliable alert delivery. We implemented a continuous
polling engine to perform standards-compliant health checks, interpreting responses strictly
according to RFC 7231 (Semantics and Content).
 Example : Website health monitoring is critical for maintaining service uptime and user
trust. However, reliance on proprietary or poorly implemented monitoring solutions often leads
to alert fatigue or, worse, missed outages due to non-compliant service polling or unreliable
notification delivery. Our project, the Multi-Channel Health Monitor (MCHM), is motivated by
the need for a standards-driven approach. We focus on the practical implementation and
rigorous testing of HTTP (RFC 7230-7235) for service polling accuracy and SMTP (RFC 5321) for
guaranteed email delivery. By adhering strictly to these RFCs and designing a unified alert
payload, we ensure that alert integrity is guaranteed and that the system is an interoperable,
reliable, and professional solution for operational assurance.

Technical Implementation
1. Setup and Tools

Implementation Steps
Our approach was based on validating protocol compliance at the implementation layer:

Poller Engine Initialization: Implemented the poller using the requests library to strictly
interpret HTTP response status codes according to RFC 7231, logging latency and status.

Test Metric Observation Note / Protocol Validation

Health Check
Accuracy

HTTP Status
Code Parsing

100% correct
classification of 4xx vs.
5xx errors.

Validated RFC 7231 for
accurate failure
categorization.

Alert Delivery
Latency

SMTP vs. HTTP
POST Time

SMTP alert: ~800ms;
HTTP Webhook alert:
~300ms.

Highlights the protocol
overhead of SMTP vs.
RESTful APIs, justifying
Celery queue separation.

TLS Pre-Alerting
Certificate
Expiry Detection

Successfully sent a
WARNING alert 30 days
prior to certificate
expiration.

Validated RFC 8446/5280
operational compliance for
security monitoring.

Asynchronous Task Queuing: Configured Celery and Redis to separate high-frequency
polling from the alert dispatch queue, ensuring resilience and non-blocking operation.
Standards-Based Alert Handlers: Developed the SMTP (RFC 5321) handler and a
generic HTTP POST handler to consume the unified JSON alert payload.
TLS/SSL Compliance Check: Integrated an explicit check for X.509 certificate validity
and expiry as per RFC 5280, pre-emptively alerting on potential security failures.

Challenges Faced
Asynchronous State Locking: We struggled with duplicate alerts being triggered by
concurrent Celery workers. This was resolved by implementing a Redis-based
distributed lock to ensure that only the first worker to detect a DOWN state was
permitted to trigger the alert sequence.
Protocol Interoperability: A challenge arose when standardizing the alert payload for
both the strict email body and the flexible HTTP POST webhook. The solution involved
designing the JSON schema to be lightweight and embedding it within the required
RFC 5322 email message structure while using it directly as the body for webhooks.

Results and Observations

Fig : Core Monitoring Dashboard

Fig : Django Admin/Backend Check

Fig : Multichannel Alert Configuration and Validation
Lessons Learned

Standards Precision: Understanding the exact semantic definitions in RFC 7231 is crucial
for building reliable, non-ambiguous monitoring logic.
Asynchronous Design: For reliable alerting, the separation of the polling task and the
notification dispatch task (via Celery) is mandatory to prevent protocol latency (e.g.,
SMTP handshake) from impacting monitoring frequency.
IETF Workflow Mirror: The iterative process of defining the unified alert payload
mirrored the standardization process—identifying a problem (inconsistent messaging)
and proposing a robust solution.

Project Contribution Status Link

SYNOVIA-Health-

Monitor

Complete Django

codebase,

configuration files,

deployment scripts.

Completed

https://github.com/Keerthan

a-star/SYNOVIA-Website-

health-monitor.git

Alert Schema

Doc

Documentation on the

proposed Unified JSON

Alert Payload

Schema99.

Completed

https://github.com/Keerthan

a-star/SYNOVIA-Website-

health-monitor.git

Team Name Institution Project Title Focus Area

SYNOVIA
Vemana Institute of

Technology

Website Health Monitor

with Multi-channel Alerts

Operational Standards

(HTTP, SMTP, TLS)

Open Source and Community Contributions

Future work
Publish Internet-Draft: Formalize the Unified JSON Alert Payload Schema and our
implementation feedback on multi-channel interoperability
Protocol Extension: Integrate monitoring for non-HTTP standards like DNS and ICMP.
AIORI Integration: Share the collected alert delivery latency dataset with the AIORI-IMN
framework for broader analysis.

AIORI-2: Reporting and Standard Mappings
 This section maps the implementation of the Website Health Monitor with Multi-channel
Alerts (SYNOVIA) to specific Internet standards and documents, highlighting the project's
technical validation of these protocols.Standards Mapping Table

 This mapping ensures that each experiment performed during the hackathon can be directly
related to an active Internet standard, reinforcing the project’s technical relevance. The
documentation, configuration files, and results have been organized systematically to support
future replication and contribute to AIORI’s repository of implementation-driven research.
Through this exercise, the report demonstrates how academic participation can effectively
support Internet standardization efforts by translating theory into measurable practice,
bridging the gap between protocol design and real-world deployment.

1. Standards Reference
 This table details the core Internet Standards referenced, the project's implementation
area, the standard's current lifecycle stage, and the precise relationship of our work to the
document.

https://github.com/Keerthana-star/SYNOVIA-Website-health-monitor.git
https://github.com/Keerthana-star/SYNOVIA-Website-health-monitor.git

RFC / Draft No. Title / Area Lifecycle Stage How This Work Relates

RFC 7231

HTTP/1.1

Semantics and

Content

Proposed

Standard

Implements and validates Section 6

(Response Status Codes) for accurate

service status reporting. The poller

engine strictly interprets codes for

reliable failure categorization.

RFC 5321

Simple Mail

Transfer

Protocol

(SMTP)

Internet

Standard

Implements and tests the operational

reliability and latency constraints of the

protocol for mission-critical email alert

delivery.

RFC 8446

The Transport

Layer Security

(TLS) Protocol

Version 1.3

Proposed

Standard

Implements a monitoring module that

validates transport security and checks

X.509 certificate compliance and expiry

against best practices defined within the

standard's ecosystem.

draft-ietf-

[New]

Unified JSON

Alert Payload

Schema

Internet-Draft

(Proposed)

Based on successful interoperable

implementation across SMTP and

RESTful APIs, this work proposes a

standardized data format for alert

messaging consistency.

Question Response with Explanation

"Does this work

support, extend, or

validate an existing

RFC?"

Supports/Validates: The project serves as a practical, open-source

reference implementation for operationalizing the semantic definitions

within RFC 7231 (HTTP) and ensuring strict protocol adherence in a

real-time system. This directly validates the utility and clarity of the

standards.

Could it influence a

new Internet-Draft or

update sections of an

RFC?

Yes. The development of the Unified JSON Alert Payload Schema

addresses a gap in standardizing alert messaging across diverse

modern channels. This successful implementation forms the basis for

proposing a new informational Internet-Draft to the community.

Impact on Standards Development
 This work provides concrete implementation feedback on the operational performance and
interoperability of the chosen standards, a critical step in the IETF process.

Any feedback or data

shared with IETF WG

mailing lists?

Not Yet. A dataset detailing the performance difference (latency)

between standards-compliant SMTP (RFC 5321) delivery and simpler

HTTP POST (Webhook) delivery has been collected. This technical

data will be prepared and shared with relevant IETF working groups

(e.g., HTTPWG) to inform discussions on protocol overhead in

operational systems.

Planned next step

(e.g., share

measurement

dataset / open PR /

draft text).

Draft Text and Dataset Sharing. The immediate next steps are to

formalize the text for the proposed Unified Alert Payload Schema

draft and to share the alert delivery latency measurement dataset

with the AIORI-IMN framework for broader analysis.

Reflections from the Team
Keerthana C: "Implementing the alert dispatch queue taught me how critical network
protocol timing is. RFC 5321 adherence is non-negotiable for reliable email, which gave
me a deep respect for IETF standards precision."
Kamal S: "Seeing the system accurately interpret a 404 vs. a 500 error based on RFC
7231 standards confirmed that building tools on core RFCs is the only path to genuine
reliability."

References
RFC 7231 – Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
RFC 5321 – Simple Mail Transfer Protocol (SMTP)
RFC 8446 – The Transport Layer Security (TLS) Protocol Version 1.3
AIORI Testbed Documentation: [aiori.in/testbed]

Acknowledgments
 We express our sincere gratitude for the essential support that made the Website Health
Monitoring with Multichannel alerts project a success.
 We specifically thank The AIORI Team and Program Office for providing the structured
framework, emphasizing IETF standards, and facilitating this valuable open-source
contribution opportunity.
 We acknowledge Vemana Institute of Technology for the academic environment and
resources necessary for development and testing.
 A special thanks goes to our mentor Prof Suma S, whose expertise guided our technical
decisions, particularly in ensuring strict adherence to HTTP (RFC 7230) and SMTP (RFC 5321)
protocol requirements.
 Finally, we recognize the wider Open-Source Community and the maintainers of the Django
Framework and essential Python libraries, upon whose collective work the MCHM system is
built. Their efforts are the foundation of modern digital infrastructure.

Contact
Lead Author: Keerthana C , Kamal S
Email: ckeerthana230@gmail.com , kamal8904005399@gmail.com
Mentor: Suma S suma.s@vemanait.edu.in

