NiXi

AIORI-2

o= tAN". 'mﬂl =

w &l Ul

- l 1

@ Hae

ANMN DURDATION

——

IEEE 224 NN LW D Ve

Team Name: SYN/ACK

Members: . aman Kumar(Student)

« Pragyensh Pritiman Panda (Student)

« Dr. Tejaswi Khanna(Professor)
Problem Statement: Modular Internet Measurement Network
over NATS

TABLE OF CONTENTS

Introduction Reporting and Standards
Mapping
Introduction 02 Standards Reference 09
Executive Summary 02 Impact on Standards Development 09
Overview 02
RFC-Open Source Contribution Conclusion
Report
N About the Authors 10

Categorization 03

- . Acknowledgement & References 10
Activities and Implementation 04
Collaboration with IETF WGs and 05

Project Impact

Technical Blog Series & Dev

Diaries

Technical Implementation 06
Results and Observations 07
Reflections from the Team 08

Blog Tink

Introduction

o Theme: Implementation and Testing of Selected Internet-Drafts / RFCs using AIORI Testbed
o Focus Areas: Modular Internet Measurement Architecture

o Organized by: Advanced Internet Operations Research in India (AIORI)

o Collaborating Institutions: Amity University Greater Noida

o Date:11/2025

o Prepared by:

Name Designation Institution
Aman Kumar Student Amity University Greater Noida
Pragyensh Pritiman Panda Student Amity University Greater Noida
Dr. Tejaswi Khanna Professor Amity University Greater Noida

Contact: ambxr2005@gmail.com(+91 995567244 4)
o Executive Summary

The "Modular Internet Measurement Network over NATS" is a decoupled, fault-tolerant architecture
for Internet measurement tasks. It uses NATS.io to separate the management plane (Anchor) from
measurement modules (latency-ping, DNS-lookup). This design enables hot-plugging, true fault isolation
(crashing modules don't affect the system), and load balancing for horizontal scaling.

« Overview

The "Modular Internet Measurement Network over NATS" is a cutting-edge, decoupled, and fault-
tolerant architecture developed during the AIORI implementation sprint by Amity University. Its core
objective was to modernize Internet measurement systems by addressing the resilience and scalability
limitations inherent in traditional monolithic designs.

The solution centers on using NATS.o as a high-performance, asynchronous message bus to
fundamentally separate the Anchor service (the management plane) from autonomous measurement
modules (the data plane), such as latency-ping and DNS-lookup.
Key Technical Achievements:
o Resilience: Demonstrated true fault isolation, ensuring module crashes do not affect the core
Anchor service or other running modules.

o Scalability: Achieved horizontal scaling with automatic load balancing handled efficiently via NATS

gueue groups.

o Flexibility: Implemented hot-plug capability, allowing new modules to be dynamically discovered

and integrated within 2-3 seconds without requiring a system restart.

o Management: Built a functional management UI/CLI for real-time job submission and result

streaming.

The project followed a structured agile methodology across four sprints, validating its design against
standards like RFC 2330 (IPPM Framework). The work serves as a reference implementation for cloud-
native measurement architectures and yielded significant open-source contributions, including the core
framework and standardized message schemas. Future plans include integrating this framework with
AIORI's main testbed and formalizing the NATS-based architectural patterns as a potential Internet-Draft
for the IETF IPPM Working Group.

RFC-Open Source Contribution Report

e Categorization:

The project established the Modular Internet Measurement Network over NATS, a decoupled, fault-
tolerant architecture separating the management plane (Anchor) from measurement modules via
NATS.io. This design enables hot-plugging, true fault isolation, and horizontal scaling. Key deliverables
included the core Anchor service, independent measurement modules (latency-ping, DNS-lookup), and a
management UI/CLI.

e Scope and Focus Areas:

Focus Area Relevant RFCs / Drafts Open-Source AIORI Module Used
Reference
Docker, Go/Node.js
Message—Based RFC 2330 (Framework) NATS Pro.tocol AIORI Transport
Architecture NATS.io
Module
RFC 2681 (Delay)
Internet RFC 5357 Custom Ping/DNS
Me;‘rii;ecgjnt RFC 4656 (OWAMP) (TWAMP) modules AIORI
Network Testbed
Secur{ty & RFC 7519 (JWT) RFC 8446 (TLS 1.3) TLS I|'brar|es AIORI
Authentication NATS JWT auth Security Framework
Data Formats & RFC 8259 (JSON)) RFC 8949 (CBOR) WebSockets AIORI
APls Data Processing

The project scope covered a wide array of Internet measurement standards and modern architecture
patterns, ensuring technical depth and interoperability.

e Sprint Methodology Workflow :

The project followed a structured agile workflow, leveraging the AIORI testbed infrastructure and

open-source tools across distinct phases.

o RFC / Draft Selection & Architecture Design: Analyzed RFC 2330, RFC 4656, and RFC 5357
specifications. Designed NATS-based message schema, subject hierarchy, and contract
specifications for decoupled communication.

o Sprint Preparation & Environment Setup: Established a NATS.io cluster with JetStream
persistence. Configured a Docker-based multi-container development environment and prepared
AIORI testbed nodes.

o Implementation Phase - Core Infrastructure: Built the Anchor Service with dynamic module
discovery and health monitoring. Implemented JWT authentication and TLS encryption for the
NATS security layer.

o Implementation Phase - Measurement Modules: Developed Latency-Ping and DNS-Lookup
modules. Incorporated graceful shutdown, retry policies, and circuit breaker patterns for module
lifecycle management.

o Implementation Phase - Management Plane: Created the Web Ul (real-time dashboard via
WebSockets), CLI interface for job submission, and REST APl endpoints for system control.

o Interoperability Testing & Validation: Conducted rigorous tests verifying hot-plugging, fault
injection (module stability during failure), horizontal scaling (load balancing), and backpressure
mechanismes.

o Documentation & Contribution: Created comprehensive API documentation, deployment guides
for Docker/Kubernetes, and published performance benchmarks

e Activities and Implementation Timeline

. " Output /
Date Activity Description Repository
https://github.com
[synack2025/AIORI
-2-Hackathon
Implemented Anchor service (since, it’s a private
24/09/2024 Sprint 1: Anchor Core | with module discovery, health | directory, only
tracking, and NATS integration | accessible using
the github id which
has been added as
the collaborator)
Sprint 2: BE\/S&:topEd later:jcyl—pmgtind
01/10/2024 Measurement . OOKUPp MOC eS.WI
independent NATS clients and
Modules . .
job processing
Built Web UI/CLI for job
Sprint 3: submission, real-time result
15/10/2024 AR
/10/ Management Plane streaming via WebSockets, and
module management
ot e Tested hot-plugging, fault
24/10/2024 Spr||.1t 4: Validation & isolation, load balancing, and
Scaling .
backpressure mechanisms

e Open-Source Contributions :

The project generated a wealth of open-source components and documentation intended for

community use and adoption:

o Core

Repository:

modular-internet-measurement -

Complete

NATS-based

measurement framework, including the Anchor service with dynamic discovery,
reference modules (latency-ping, DNS-lookup, HTTP-probe), and the Management
Ul/dashboard. Docker/Kubernetes deployment configurations are included.
o Developer Tools & Schemas: nats-measurement-schemas - Standardized message

contracts, versioned JSON schemas, and Protocol Buffer definitions.

o Documentation & Guides: Architecture Guidelines (NATS-based decoupled patterns), a
Module Development Cookbook, and Production Deployment Runbooks.
o Community Impact: Released a Module Development Kit (templates, testing utilities)
and Integration Adapters (Prometheus exporter, Grafana dashboards) to build a
contributing ecosystem.

https://github.com/synack2025/AIORI-2-Hackathon
https://github.com/synack2025/AIORI-2-Hackathon
https://github.com/synack2025/AIORI-2-Hackathon

Collaboration with IETF WGs and Project Impact :

The architectural insights generated are relevant for immediate feedback to global
standardization efforts:

o IPPM WG (IP Performance Metrics): The modular architecture provides practical
implementation insights for Internet measurement frameworks (RFC 2330), demonstrating
how decoupled designs using NATS enhance system resilience and scalability over
traditional coordination methods.

o Potential for NETMOD WG: The patterns for dynamic module discovery and management
can inform model-driven management approaches for distributed measurement systems.

o Immediate Impact: Provides a validated reference implementation for modular, resilient
Internet measurement architectures and a readily deployable solution for distributed
network monitoring within the AIORI testbed.

o Future Work Directions: Integrate the framework with the main AIORI-IMN testbed;
develop advanced measurement modules (e.g., QUIC performance, BGP monitoring); and
Formalize the NATS subject schema and message formats as a potential Internet-Draft for
the IETF community.

Results and Findings :

Key Technical Insights:

o Successfully demonstrated hot-plugging and achieved true fault isolation—module crashes
did not affect the system's stability.

o Validated horizontal scaling as multiple module instances were automatically load-
balanced via NATS queue groups.

o Implemented effective backpressure by having the Anchor throttle job submission to
saturated modules.

o Performance outcomes showed module discovery completed within 2-3 seconds, and job
processing latency was under 50ms.

Future Work Directions:

¢ Integrate with AIORI-IMN measurement framework as scalable measurement nodes

e Develop additional measurement modules (QUIC performance, BGP monitoring, RPKI
validation)

e Enhance security with more granular NATS permissions and authentication

e Explore federation across multiple NATS clusters for geographic distribution

e Formalize the NATS subject schema and message formats as potential Internet-Draft

Technical Blog Series & Dev Diaries

e Technical Implementation:

1. Setup and Tools:

o

o
o
o

Development Environment:

Primary Platform: [Your OS - Ubuntu/Windows/macQS]
Container Environment: Docker with Docker Compose
Programming Stack: [Your languages - Go/Node js/Python]

e Core Infrastructure:
o Message Broker: NATS.io server with JetStream persistence
o Service Discovery: File system watcher with NATS announcements
o Container Orchestration: Docker Compose for multi-service management

« Measurement & Analysis Tools:
o Module Framework: Custom NATS client wrappers with health monitoring
o Job Management: Versioned JSON schemas for measurement jobs
o Real-time Monitoring: WebSocket dashboard for live result streaming

¢ Key Software Components:
o Anchor Service: Module discovery and health management
o Measurement Modules: Latency-ping, DNS-lookup, HTTP-probe
o Management Interface: Web Ul and CLI for system control
o Security Layer: IWT authentication and TLS encryption

2. Implementation Steps:

o NATS-based Architecture Design
o Designed subject hierarchy for job distribution and result collection
o Implemented versioned JSON schemas for job requests and responses
o Established module discovery protocol using mmn.modules.announce subject
o Created health monitoring system with heartbeat mechanisms

e Anchor Service Development
o Built dynamic module loader with file system watcher integration
o Implemented health tracking with circuit-breaker patterns
o Developed job scheduling with backpressure awareness
o Added graceful shutdown handling for clean module termination

« Measurement Module Implementation
o Created latency-ping module implementing ICMP-based measurements
o Developed DNS-lookup module with configurable record type support
o Built module template with standardized NATS client integration
o Implemented retry policies and error handling for network fluctuations

¢ Management Plane Integration
o Developed Web Ul with real-time WebSocket result streaming
o Built CLI tool for job submission and module management
o Implemented REST APIs for system monitoring and control
o Created visualization components for measurement results

e Challenges Faced:

o Module Discovery Timing: Initially faced race conditions where modules would announce before
Anchor was ready, requiring heartbeat-based discovery with retry mechanismes.

o Message Schema Versioning: Early schema changes broke compatibility, leading to
implementation of versioned subjects and backward-compatible parsing.

o WebSocket Connection Management: Real-time Ul updates required careful connection pooling
and reconnection logic for reliable data streaming.

o Health Monitoring Accuracy: Distinguishing between temporary network issues and actual
module failures needed sophisticated heartbeat patterns with configurable timeouts.

o Load Balancing Coordination: Ensuring fair job distribution across multiple module instances
required careful queue group configuration and workload monitoring.

Results and Observations:

Test Metric Observation Note
. Module discovery and Automatic without
Hot plugging 2-3 seconds registration successful Anchor restart
Fault Isolation 0% impact Other mgdules continue Crashed module doesn't
working normally affect system
. Even Work shared across NATS queue groups
Load Balancin . S .
g distribution multiple instances automatically balance
Graceful Anchor throttles job Prevents module
Backpressure . .
degradation submission overload
Varies by measurement
Measurement
<50ms Local measurement type
Latency
performance

Lessons Learned:

o

Decoupled Architecture Power: Discovered that a message-based, decoupled design (using
NATS) provides true fault isolation and enables hot-plugging, proving that loose coupling is
superior to monolithic systems for resilience and scalability.

NATS.io in Practice: Learned that NATS.io subjects and queue groups offer a remarkably simple
yet powerful way to implement load balancing and pub-sub patterns, but they require careful
subject hierarchy design from the start.

State Management Complexity: Realized that managing the state and health of dynamic,
independent modules is more challenging than in a monolithic system, necessitating robust
heartbeat and discovery mechanisms.

Tool Integration: Found that integrating the NATS ecosystem with our measurement modules
and management Ul required careful configuration and a clear understanding of connection
lifecycles and error handling in a distributed context.

Development Workflow Value: Experienced how a microservices-like approach allowed our team
to work on the Anchor, modules, and Ul in parallel, significantly speeding up development and
testing.

o Reflections from the Team:

e Pragyensh Pritiman Panda (Research & Presentation Lead):

o “This hackathon was a deep dive into turning complex architectural concepts into a working reality.
My focus was on ensuring our solution wasn't just technically sound but also understandable and
presentable. Designing the Ul and crafting the narrative around our NATS-based architecture
taught me how crucial clear communication is in bridging the gap between advanced engineering
and its real-world impact. Seeing our modular vision come to life on the dashboard was incredibly
rewarding.”

« Aman (Backend & Systems Architect):

o “Building the core backbone of the system—connecting the Anchor to NATS and ensuring the
modules could communicate seamlessly—was the ultimate challenge. It was like being a
conductor ensuring every instrument in an orchestra plays in perfect sync, even if one suddenly
stops. Debugging the initial connection issues and finally achieving true hot-plugging and fault
isolation was a moment of pure triumph. This experience solidified my understanding of
distributed systems in a way no textbook ever could.”

¢ Dr. Tejaswi Khanna (Mentor):

o “Guiding Syn/Ack has been a remarkable experience. Pragyensh's focus on the user-facing aspects
and Aman's deep dive into the backend created a perfect balance of form and function. Their ability
to divide the problem domain, tackle complex issues in NATS integration and module decoupling,
and then synthesize it all into a coherent system was impressive. Their journey is a testament to
how hands-on building—coupled with strong research—can create robust and innovative
solutions.”

e Future Work:

* AIORI Framework Integration & Data Democratization

o Showecase real-time Docker container metrics and system health on a public-facing landing page,
transforming raw data into actionable insights for the broader community.

o Develop standardized APIs to seamlessly integrate our modular measurement node into the
AIORI-IMN framework, enabling distributed, large-scale Internet measurement.

o Create advanced, interactive dashboard visualizations that not only display data but also tell the
story of network performmance and system behavior.

» Standards Development & Ecosystem Collaboration

o Publish our NATS-based architectural patterns and interoperability results as an Internet-Draft,
contributing a modern, cloud-native approach to measurement frameworks.

o Combine and correlate our measurement data with datasets from IETF and other research bodies
to identify larger Internet trends and patterns.

o Develop Best Current Practices documents for building resilient, decoupled measurement
infrastructure, based on our proven implementation.

¢ Protocol Enhancements & Architectural Revolution

o Extend our module ecosystem to include QUIC performance measurement, RPKI validation, and
BGP monitoring, making the platform a one-stop-shop for Internet health checks.

o Pioneer the use of our NATS-based, hot-pluggable architecture as a new paradigm for building
adaptive, future-proof Internet measurement tools.

o Explore Al/ML-driven auto-scaling and predictive module deployment to create a truly self-
healing, intelligent measurement network.

AIORI-2: Reporting and Standards Mapping

o Standards Reference

RFC / Draft No. | Title / Area Lifecycle Stage | How This Work Relates
Implements and extends the
architectural framework by
REC 2330 IP Performance Proposed providing a practical NATS-based
Metrics Framework | Standard modular implementation for
scalable and fault-tolerant Internet
measurement systems.
Provides the foundational
One-way Active Proposed principles for active measurements
RFC 4656 Measurement that our latency-ping module
Standard

Protocol (OWAMP)

implements within the decoupled
architecture.

NATS Protocol

Cloud Native
Messaging System

Serves as the core messaging
backbone enabling hot-plugging,
fault isolation, and load balancing
across measurement modules.

Open Standard

o Impact on Standards Development

Question

Response with Explanation

Does this work
support, extend, or
validate an existing
RFC?

Yes - Extends RFC 2330: Our implementation provides a practical,
cloud-native architectural pattern for building modular measurement
systems, demonstrating how RFC 2330's framework principles can be
implemented with modern message-based decoupling.

Could it influence a
new Internet-Draft or
update sections of an
RFC?

Yes - Could influence measurement architecture BCP: Our NATS-
based approach for hot-pluggable modules and fault isolation could
be documented as a Best Current Practice for building resilient
Internet measurement infrastructure.

Any feedback or data
shared with IETF WG
mailing lists?

Planned for IPPM WG: Will share architectural insights and
implementation experience with building decoupled measurement
systems using cloud-native patterns, including performance data on
hot-plugging and fault isolation.

Planned next step

1. Open-source the modular measurement framework

2. Submit architectural patterns to IPPM WG

3. Draft BCP text for NATS-based measurement systems

4. Extend module ecosystem with QUIC and RPKI measurements

e About the Authors:

o Syn/Ack is composed of two dedicated developers, each bringing complementary expertise and a
shared commitment to innovative networking solutions and modular system architecture. We
share a common vision—to create systems that are not only efficient and scalable but also resilient
and adaptive to dynamic internet conditions.

o Pragyensh Pritiman Panda (Research & Presentation Lead) is an undergraduate student at
Amity University with a strong academic record (9.2 CGPA) and diverse technical skills in Full Stack
Development, AI/ML tools, and Public Speaking. With experience building modern web
applications using Next.js, React, and Flutter, and a proven track record in competitive hackathons
including being selected for the AIORI-2 Physical Hackathon Finale, he brings strong research,
UI/UX design, and communication skills to the team. His leadership roles as Head Boy and event
host have honed his ability to coordinate teams and present complex technical concepts
effectively.

o Aman (Backend & Systems Architect) is a full-stack developer with deep expertise in cloud
computing and a strong enthusiasm for data analytics. His backend development skills and
understanding of distributed systems were crucial in architecting the NATS-based modular
framework, ensuring robust connections between the Anchor service and measurement modules.
His cloud computing knowledge helped design the containerized deployment strategy, while his
data analytics interest drove the implementation of meaningful metrics collection and
visualization.

o Crucial to our progress was the guidance of our mentor, Dr. Tejaswi Khanna, whose deep insight
into internet infrastructure ensured our project strategy remained rigorous and industry-relevant.
His mentorship created an environment of exploration and constructive feedback, helping us
navigate complex architectural decisions and transform challenges into valuable learning
opportunities.

o Together, we formed a nimble, collaborative unit that combined frontend excellence with backend
robustness, eager to tackle complex distributed systems problems and committed to building
solutions with real-world impact.

We thrive on the perfect handshake between research and execution—hence the name Syn/Ack.

o« Acknowledgement:

We extend our deepest gratitude to the AIORI organizing committee, our mentors, the NATS.io
community for their elegant messaging system, and the IETF community (especially authors of RFC 2330)
for providing the foundational standards. Our sincere thanks also go to the open-source ecosystem and
our fellow participants for making this sprint transformative.

o References:

o RFC 2330 - IP Performance Metrics (IPPM) Framework

o RFC 4656 - A One-way Active Measurement Protocol (OWAMP)

o RFC 5357 - A Two-Way Active Measurement Protocol (TWAMP)

o RFC 8762 - Simple Two-way Active Measurement Protocol (STAMP)
o RFC 2681 - A Round-trip Delay Metric for IPPM

o RFC 7679 - A One-Way Delay Metric for IPPM

o RFC 7680 - A One-Way Loss Metric for IPPM

o RFC 5905 - Network Time Protocol Version 4 (NTPv4)

o RFC 8259 - The JavaScript Object Notation (JSON) Data Interchange Format
o RFC 8949 - Concise Binary Object Representation (CBOR)

o RFC 8446 - The Transport Layer Security (TLS) Protocol Version 1.3

o RFC 7519 - JSON Web Token (JWT)

o NATS.io Documentation: https:/docs.nats.io/

o AIORI Testbed Documentation: [aiori.in/testbed]

o IETF IPPM Working Group: https://datatracker.ietf.org/wg/ippm/

Contact:
member 1-> Email: princepragyensh@gmail.com ; member 2-> Email: ambxr2005@gmail.com

Mentor: Dr Tejaswi Khanna

