
Hyperfast DNS Load Balancer

Introduction

Executive Summary

Overview

Sprint Methodology:

Activities and Implementation

Collaboration with IETF WGs

Technical Implementation

06Results and Observations

Standards Reference

Impact on Standards Development

Introduction

02
02
02

RFC-Open Source Contribution
Report

03
03
04

Technical Blog Series & Dev
Diaries

05

Reporting and Standards
Mapping

06
07

About the Authors

Acknowledgement & References

Conclusion

07
07

Blog link

TABLE OF CONTENTS

Team Name:

Members:

Problem Statement:

Balachandhar D(Student)

Buvanesh D (Student)

A. DINESHKUMAR(Professor)

Ping@St.Joseph's

Name Designation Institution

Balachandhar D Student
St. Joseph's Institute of

Technology

Buvanesh D Student
St. Joseph's Institute of

Technology

A. DINESHKUMAR Professor
St. Joseph's Institute of

Technology

Theme: Implementation and Testing of Selected Internet‑Drafts / RFCs using AIORI Testbed​
Focus Areas: Encrypted DNS and Telemetry (primary), with DNS operations alignment.
Organized by: Advanced Internet Operations Research in India (AIORI)
Collaborating Institutions: Heritage Institute of Technology, Kolkata
Date: 05/11/2025
Prepared by:

Introduction

Contact: dineshkumara@stjosephstechnology.ac.in , +91 9710112063

 This report documents the design, implementation, and evaluation of “Hyperfast DNS Load
Balancer,” a Linux‑native DNS load balancer targeting ≥1M QPS (simulated) and
sub‑millisecond latency, built with an eBPF/XDP data plane, a Go control plane, and a
Prometheus/Grafana observability stack; an adaptive Python prototype is provided for
constrained environments while preserving core architecture principles.​

Executive Summary

Overview

 This sprint culminated in the delivery of Hyperfast DNS, a Linux-native load balancer
engineered for the extreme performance demands of modern internet infrastructure. By
shifting the heavy lifting of packet processing into the kernel via an eBPF/XDP data plane, the
system achieves a simulated throughput of ≥1M Queries Per Second (QPS) with sub-
millisecond latency—effectively bypassing the traditional bottlenecks of the Linux networking
stack.
 The architecture utilizes a dual-layer design: a high-velocity data plane for immediate query
steering and a sophisticated Go-based control plane for management and policy
enforcement. This is further supported by a Prometheus and Grafana observability stack,
providing real-time telemetry into traffic distribution and system health. Recognizing the
need for portability, we also developed an adaptive Python prototype that preserves these
core architectural principles for use in resource-constrained environments where full XDP
hooks might be unavailable.
 By proving that standards-compliant DNS handling can be offloaded to programmable
hardware hooks, Hyperfast DNS offers a blueprint for the next generation of resilient, low-
latency services. This project demonstrates how modern kernel technologies can be
harnessed to neutralize large-scale traffic spikes while maintaining the surgical precision
required for global DNS resolution.

mailto:dineshkumara@stjosephstechnology.ac.in

Objectives:
Implement selected DNS RFCs and operational best practices in a controlled
environment, focusing on transparent proxying, EDNS0 handling, and resilient load
balancing.​
Contribute code and dashboards to open‑source communities (Prometheus and
Grafana, CoreDNS plugin proposal, ebpf examples) and prepare feedback for DNSOP
telemetry work.​
Generate implementation feedback to relevant IETF working groups (dnsop, add) from
real telemetry and load testing, and strengthen local capacity in Internet standards
implementation.​

Scope and Focus Areas:
Focus Area: Encrypted DNS and Telemetry (primary), with DNS operations alignment.​
Relevant RFCs: RFC 1034/1035 (DNS fundamentals), RFC 6891 (EDNS0), RFC 7871 (ECS,
future), RFC 8484/7858/9250 (DoH/DoT/DoQ, future integration).​
Open-Source References: miekg/dns, CoreDNS, ebpf; Prometheus and Grafana for
monitoring.​

Sprint Methodology:
 The project followed a structured sprint workflow: selection, implementation, interoperability
testing, documentation/contribution, and post‑sprint reporting within the AIORI process.​
Workflow steps were applied iteratively to kernel fast path (XDP), control‑plane
health/telemetry, Prometheus integration, Grafana dashboards, and high‑QPS driver testing.​

Activities and Implementation:

Github Repositry link: https://github.com/bala2007-05/hyperfast-dns-project

Sprint: Architecture and Problem Study
Description: Captured DNS bottlenecks, target SLOs, and RFC/Anycast alignment;
defined data/control/monitoring planes and 1M+ QPS target. Output: Project design
document.​
Sprint: eBPF/Go Kernel Fast‑Path Scaffolding
Description: Implemented loader and map lifecycles, attached XDP, defined maps:
backends, backend_stats, global_stats, rr index; ensured program name and section
alignment. Output: Loader and map APIs.​
Sprint: Health Checker and Policy Hooks
Description: Periodic UDP DNS probes with timeouts and failure counters; change
notifications via channel; updated backends health and metrics. Output: Health checker
package.​
Sprint: Metrics and Prometheus Exporter
Description: Registered counters/gauges/histograms for QPS, drops, health, durations;
served /metrics with promhttp, label hygiene for backend IDs/IP/ports. Output: Metrics
collector.​
Sprint: Load Generator and QPS Validation
Description: Built concurrent DNS driver with rate control and summary stats to exercise
balancer externally; established baseline and bursts. Output: Driver utility.​
Sprint: Grafana Observability
Description: QPS, backend health, drop rate, load distribution, CPU/memory panels;
documented PromQL for burst/average/peaks and SLA monitoring. Output: Dashboard
spec and panels.​
Sprint: Mentor Demo and Performance Evidence
Description: Live run with ~15K QPS sustained, 0 drop rate, balanced distribution; scripts
for quick start and test runs. Output: Demo collateral.​

Results and Findings:
Throughput and Stability: Demonstrated ~15K QPS sustained and zero packet drops;
forwarding latency sub‑ms in design; health‑aware round‑robin effective. Evidence:
Demo metrics and dashboard panels.​
Observability: Prometheus exporter surfaced QPS, per‑backend load, drop rates, health
status, and system CPU/memory; Grafana provided live and historical analysis for
capacity planning.​
Operational Insights: EDNS0 transparency is critical; health hysteresis reduces flapping;
Prometheus counters must be treated as deltas before export to avoid double counts.​

Open-Source Contributions:
Grafana: Prepared the “Hyperfast DNS Load Balancer” dashboard for community
publication with documented PromQL and thresholds. Status: To publish.​
CoreDNS Plugin (Plan): Proposal to refactor the balancer logic into a CoreDNS forwarder
plugin with health‑aware, weighted strategies and Prometheus labels. Status: Roadmap.​
eBPF/Go Example: Reference implementation using cilium/ebpf for a DNS balancer;
intended write‑up and code sample contribution. Status: Roadmap.​
miekg/dns: Performance notes and potential fixes from high‑QPS testing for upstream
discussion. Status: To open issues/PRs.​

Collaboration with IETF WGs:
dnsop: Telemetry metrics (QPS, latency, drops) and dashboard queries align with
evolving DNS telemetry work; plan to share measurement approach and dashboards.​
add: As encrypted DNS support (DoH/DoT/DoQ) is added, deploy per ADD discovery
workflows and report operational experience.​

Impact and Future Work:
Integration: Results feed into AIORI‑IMN measurement framework and are suitable for
IETF hackathon participation; dashboards and metrics ready for operator reuse.​
Roadmap: Deploy eBPF/XDP version in Linux with native mode; implement weighted
and latency‑aware strategies, ECS forwarding for geo, and encrypted DNS; add DDoS
mitigations in XDP.​

Setup and Tools
OS: Ubuntu Linux; Languages: Go (control plane), C (eBPF), Python (adaptive
prototype)​
Libraries: cilium/ebpf, Prometheus client, promhttp, Grafana​
Utilities: dig, custom load generator (concurrency, QPS control), shell scripts for
demo​

Implementation Steps
eBPF/XDP Lifecycle: Load collection, resolve maps (backends, stats, global, rr), attach
program, and manage detach; provide reset and info APIs.​
Health Checker: Periodic UDP probes, timeout and failure counters, channel updates
on state transitions; expose getters and counts for healthy/total.​
Metrics Exporter: Counters/gauges/histograms for packets, bytes, drop reasons,
backend health, health‑check durations; serve /metrics; label hygiene for backend
identity.​
Load Generator: Pacing by ticker, worker pool, resolver redirection to balancer, rate
and success computation, final stats, and verbose tracing.​
Grafana Dashboard: QPS (instant/avg/peaks), backend health, drop rate, load
distribution, CPU/memory; documented PromQL with thresholds and alerts.​

Challenges Faced
Environment constraints (sudo/kernel headers) led to an adaptive Python prototype
while retaining architecture principles; generic XDP mode used for development;
planned native‑mode deployment.​
Prometheus counter semantics required delta handling; health flapping prompted
need for hysteresis via maxFailures and recovery thresholds.​

Technical Blog Series & Dev Diaries
 Fast, reliable DNS is foundational for user experience and CDN performance; by moving
packet processing to Linux’s eBPF/XDP and orchestrating policies in Go with
Prometheus/Grafana, this project reaches modern SLOs while providing operator‑grade
observability.​

 Traditional DNS balancers suffer latency and scalability bottlenecks; this work targets ≥1M
QPS (simulated) and sub‑ms latency with intelligent routing; correct handling of DNS
fundamentals (RFC 1034/1035) and EDNS0 (RFC 6891) is essential to avoid breaking modern
resolvers and CDNs.​

Technical Implementation:

Results and Observations:
Live Status: ~15K QPS sustained, zero drops; balanced per‑backend distribution under
round‑robin; stable CPU/memory during spikes.​
Key Queries: Instant QPS, 1‑minute average, 5‑minute peak; backend health sum/avg;
drop rate and %; per‑backend distribution; CPU %, RSS, goroutines, GC.​
DNS Load Balancer output:

Testing output for QPS:

Grafana Output:

 Lessons Learned:
 Strict EDNS0 transparency and ECS forwarding are critical for correctness and future geo
routing; maintaining counters as deltas avoids metric inflation; control‑plane health hysteresis
prevents flapping.​

Open Source and Community Contributions:
 Dashboard publication (Grafana); CoreDNS plugin proposal for health‑aware forwarder;
eBPF/Go example write‑up; potential miekg/dns optimizations.​

Reporting and Standards Mapping:
Standards Reference :

RFC 1034/1035 — DNS Fundamentals — Internet Standard — Validates proxy correctness
(IDs, opcodes, RCODE, section integrity).​
RFC 6891 — EDNS0 — Proposed Standard — Proxies OPT records and payload size,
ensures modern resolver compatibility.​
RFC 7871 — ECS — Proposed Standard — Future: Forward ECS for geo‑aware routing
alignment.​
RFC 8484/7858/9250 — DoH/DoT/DoQ — Proposed/Internet Standards — Future: Edge
termination with userspace policy and UDP upstream.​

Impact on Standards Development:
Supports existing RFCs by demonstrating operational behaviors for high‑QPS DNS
proxying with telemetry; contributes metrics and dashboards aligned with dnsop
telemetry discussions; plans to share datasets and configuration examples.​
Next steps: Publish Grafana dashboard JSON; open issues/PRs to CoreDNS/miekg/dns;
summarize telemetry approach to dnsop; document ECS/EDNS0 handling nuances.​

References:
RFC 1034
RFC 1035
RFC 6891
RFC 7871
RFC 8484
RFC 7858
RFC 9250
AIORI testbed documentation and dnsop/add WGs.​

Acknowledgments:
 A Sincere Thanks to all the mentors, AIORI committee, participating institutions, and
open‑source communities (miekg/dns, CoreDNS, cilium/ebpf, Prometheus/Grafana) supporting
this work.​

Reflections from the Team:
Preserving DNS correctness (RFC 1034/1035, EDNS0) mattered more than raw speed;
transparency first, optimization next.​
Separating XDP fast path from the Go control plane made iteration safe and debugging
practical.​
Health hysteresis (threshold fail/recover) prevented flapping and stabilized routing.​
Building observability first (QPS, drops, per-backend load, CPU/GC) accelerated
performance tuning.​
Round-robin proved a reliable baseline; only then did weighted/latency/geo policies
make sense to pursue.

Contact:
Lead Author: Balachandhar D, Buvanesh D
Email: balachandhar2005@gmail.com , buvaneshdevaraj@gmail.com
Mentor: Mr. Dinesh kumar A, Associate Professor, St.Joseph’s Institute of Technology

