AIORI-

HIIGKIITH ON 2023

IEEE 335 o | \(m

- . S \ |
— (== : ICANN g FOUNL
b =
—— e e e ——— e ') . I | - - .

Team Name: Ping@St.Joseph's

Members: . Balachandhar D(Student)
o« Buvanesh D (Student)
o« A. DINESHKUMAR(Professor)

Problem Statement:Hyperfast DNS Load Balancer

TABLE OF CONTENTS

Introduction Reporting and Standards
Mapping

Introduction 02 Standards Reference 06

Executive Summary 02 Impact on Standards Development 07

Overview 02

RFC-Open Source Contribution Conclusion

Report

Sprint Methodology: 03 Rbout the Authors 07

Activities and Implementation 03 Acknowledgement & References 07

Collaboration with IETF WGs 04

Technical Blog Series & Dev

Diaries
Technical Implementation 05
Results and Observations 06

Blog Tink

Introduction

« Theme: Implementation and Testing of Selected Internet-Drafts / RFCs using AIORI Testbed
e Focus Areas: Encrypted DNS and Telemetry (primary), with DNS operations alignment.

« Organized by: Advanced Internet Operations Research in India (AIORI)

« Collaborating Institutions: Heritage Institute of Technology, Kolkata

« Date: 05/11/2025

e Prepared by:

Name Designation Institution

Balachandhar D Student St. Joseph's Institute of

Technology

Buvanesh D Student St. Joseph's Institute of
Technology

A. DINESHKUMAR Professor St. Joseph's Institute of

Technology

Contact: dineshkumara@stjosephstechnology.ac.in, +91 9710112063

« Executive Summary

This report documents the design, implementation, and evaluation of “Hyperfast DNS Load
Balancer,” a Linux-native DNS load balancer targeting =IM QPS (simulated) and
sub-millisecond latency, built with an eBPF/XDP data plane, a Go control plane, and a
Prometheus/Grafana observability stack; an adaptive Python prototype is provided for
constrained environments while preserving core architecture principles.

e Overview

This sprint culminated in the delivery of Hyperfast DNS, a Linux-native load balancer
engineered for the extreme performance demands of modern internet infrastructure. By
shifting the heavy lifting of packet processing into the kernel via an eBPF/XDP data plane, the
system achieves a simulated throughput of =IM Queries Per Second (QPS) with sub-
millisecond latency—effectively bypassing the traditional bottlenecks of the Linux networking
stack.

The architecture utilizes a dual-layer design: a high-velocity data plane for immediate query
steering and a sophisticated Go-based control plane for management and policy
enforcement. This is further supported by a Prometheus and Grafana observability stack,
providing real-time telemetry into traffic distribution and system health. Recognizing the
need for portability, we also developed an adaptive Python prototype that preserves these
core architectural principles for use in resource-constrained environments where full XDP
hooks might be unavailable.

By proving that standards-compliant DNS handling can be offloaded to programmable
hardware hooks, Hyperfast DNS offers a blueprint for the next generation of resilient, low-
latency services. This project demonstrates how modern kernel technologies can be
harnessed to neutralize large-scale traffic spikes while maintaining the surgical precision
required for global DNS resolution.

mailto:dineshkumara@stjosephstechnology.ac.in

o Objectives:

o

Implement selected DNS RFCs and operational best practices in a controlled
environment, focusing on transparent proxying, EDNSO handling, and resilient load
balancing.

Contribute code and dashboards to open-source communities (Prometheus and
GCrafana, CoreDNS plugin proposal, ebpf examples) and prepare feedback for DNSOP
telemetry work.

Generate implementation feedback to relevant IETF working groups (dnsop, add) from
real telemetry and load testing, and strengthen local capacity in Internet standards

implementation.

e Scope and Focus Areas:

o Focus Area: Encrypted DNS and Telemetry (primary), with DNS operations alignment.

o Relevant RFCs: RFC 1034/1035 (DNS fundamentals), RFC 6891 (EDNSO), RFC 7871 (ECS,

future), RFC 8484/7858/9250 (DoH/DoT/DoQ, future integration).

o Open-Source References: miekg/dns, CoreDNS, ebpf; Prometheus and Grafana for

monitoring.

e Sprint Methodology:

The project followed a structured sprint workflow: selection, implementation, interoperability

testing, documentation/contribution, and post-sprint reporting within the AIORI process.

Workflow steps were applied

iteratively to kernel fast path

(XDP),

health/telemetry, Prometheus integration, Grafana dashboards, and high-QPS driver testing.

e Activities and Implementation:
Date Activity

Sep 24-30 Sprint 1: Repository Setup &

Research

Oct 1-7 Sprint 2: Prototype DNS Engine
Development

Oct 8-14 Sprint 4: Load Balancing Strategy
Implementation

Oct 15-20 Sprint 4: Monitoring &
Observability Integration

Oct 21-23 Sprint 5: Stress Testing &
Performance Benchmarking

Oct 24 Sprint 6: Documentation & Final

Demo Preparation

Description

Set up project structure, selected Golang tech stack, finalized
architecture design, and validated DNS protocol handling
requirements.

Built core UDP-based DNS query handler, implemented
forwarding logic to backend DNS servers, and verified
response correctness with dig testing.

Added round-robin backend distribution, concurrent worker
processing, and backend health-check mechanism to ensure
resilient request routing.

Integrated Prometheus metrics exporter, defined QPS and
backend performance counters, and created real-time
Grafana dashboard visualizations.

Conducted load tests up to 50K QPS bursts, measured
latency and packet drop rate, optimized UDP buffer sizing
and worker concurrency.

Prepared final technical report, deployment guide, demo
scripts, and performance comparison dashboard for mentor
presentation.

Github Repositry link: https:/github.com/bala2007-05/hyperfast-dns-project

control-plane

Sprint: Architecture and Problem Study

Description: Captured DNS bottlenecks, target SLOs, and RFC/Anycast alignment;
defined data/control/monitoring planes and 1M+ QPS target. Output: Project design
document.

Sprint: eBPF/Go Kernel Fast-Path Scaffolding

Description: Implemented loader and map lifecycles, attached XDP, defined maps:
backends, backend_stats, global_stats, rr index; ensured program name and section
alignment. Output: Loader and map APIs.

o Sprint: Health Checker and Policy Hooks

Description: Periodic UDP DNS probes with timeouts and failure counters; change
notifications via channel; updated backends health and metrics. Output: Health checker
package.

Sprint: Metrics and Prometheus Exporter

Description: Registered counters/gauges/histograms for QPS, drops, health, durations;
served /metrics with promhttp, label hygiene for backend IDs/IP/ports. Output: Metrics
collector.

Sprint: Load Generator and QPS Validation

Description: Built concurrent DNS driver with rate control and summary stats to exercise
balancer externally; established baseline and bursts. Output: Driver utility.

Sprint: Grafana Observability

Description: QPS, backend health, drop rate, load distribution, CPU/memory panels;
documented PromQL for burst/average/peaks and SLA monitoring. Output: Dashboard
spec and panels.

Sprint: Mentor Demo and Performance Evidence

Description: Live run with ~15K QPS sustained, O drop rate, balanced distribution; scripts
for quick start and test runs. Output: Demo collateral.

e Results and Findings:

o

Throughput and Stability: Demonstrated ~15K QPS sustained and zero packet drops;
forwarding latency sub-ms in design; health-aware round-robin effective. Evidence:
Demo metrics and dashboard panels.

Observability: Prometheus exporter surfaced QPS, per-backend load, drop rates, health
status, and system CPU/memory; Grafana provided live and historical analysis for
capacity planning.

Operational Insights: EDNSO transparency is critical; health hysteresis reduces flapping;
Prometheus counters must be treated as deltas before export to avoid double counts.

e Open-Source Contributions:

o

Crafana: Prepared the “Hyperfast DNS Load Balancer” dashboard for community
publication with documented PromQL and thresholds. Status: To publish.

CoreDNS Plugin (Plan): Proposal to refactor the balancer logic into a CoreDNS forwarder
plugin with health-aware, weighted strategies and Prometheus labels. Status: Roadmap.
eBPF/Go Example: Reference implementation using cilium/ebpf for a DNS balancer;
intended write-up and code sample contribution. Status: Roadmap.

miekg/dns: Performance notes and potential fixes from high-QPS testing for upstream
discussion. Status: To open issues/PRs.

e Collaboration with IETF WGs:

o

dnsop: Telemetry metrics (QPS, latency, drops) and dashboard queries align with
evolving DNS telemetry work; plan to share measurement approach and dashboards.
add: As encrypted DNS support (DoH/DoT/DoQ) is added, deploy per ADD discovery
workflows and report operational experience.

 Impact and Future Work:

o

o

Integration: Results feed into AIORI-IMN measurement framework and are suitable for
IETF hackathon participation; dashboards and metrics ready for operator reuse.
Roadmap: Deploy eBPF/XDP version in Linux with native mode; implement weighted
and latency-aware strategies, ECS forwarding for geo, and encrypted DNS; add DDoS
mitigations in XDP.

Technical Blog Series & Dev Diaries

Fast, reliable DNS is foundational for user experience and CDN performance; by moving
packet processing to Linux's eBPF/XDP and orchestrating policies in Go with
Prometheus/Grafana, this project reaches modern SLOs while providing operator-grade
observability.

Traditional DNS balancers suffer latency and scalability bottlenecks; this work targets =1M
QPS (simulated) and sub-ms latency with intelligent routing; correct handling of DNS
fundamentals (RFC 1034/1035) and EDNSO (RFC 6891) is essential to avoid breaking modern
resolvers and CDNSs.

e Technical Implementation:

o Setup and Tools

= OS: Ubuntu Linux; Languages: Go (control plane), C (eBPF), Python (adaptive
prototype)

» Libraries: cilium/ebpf, Prometheus client, promhttp, Grafana

» Utilities: dig, custom load generator (concurrency, QPS control), shell scripts for
demo

o Implementation Steps

» eBPF/XDP Lifecycle: Load collection, resolve maps (backends, stats, global, rr), attach
program, and manage detach; provide reset and info APls.

= Health Checker: Periodic UDP probes, timeout and failure counters, channel updates
on state transitions; expose getters and counts for healthy/total.

» Metrics Exporter: Counters/gauges/histograms for packets, bytes, drop reasons,
backend health, health-check durations; serve /metrics; label hygiene for backend
identity.

» Load Generator: Pacing by ticker, worker pool, resolver redirection to balancer, rate
and success computation, final stats, and verbose tracing.

» Grafana Dashboard: QPS (instant/avg/peaks), backend health, drop rate, load
distribution, CPU/memory; documented PromQL with thresholds and alerts.

o Challenges Faced

» Environment constraints (sudo/kernel headers) led to an adaptive Python prototype
while retaining architecture principles; generic XDP mode used for development;
planned native-mode deployment.

» Prometheus counter semantics required delta handling; health flapping prompted
need for hysteresis via maxFailures and recovery thresholds.

e Results and Observations:
o Live Status: ~15K QPS sustained, zero drops; balanced per-backend distribution under
round-robin; stable CPU/memory during spikes.
o Key Queries: Instant QPS, 1-minute average, 5-minute peak; backend health sum/avg;
drop rate and %, per-backend distribution; CPU %, RSS, goroutines, GC.
o DNS Load Balancer output:

o Testing output for QPS:

o Grafana Output:

g

 Lessons Learned:
Strict EDNSO transparency and ECS forwarding are critical for correctness and future geo
routing; maintaining counters as deltas avoids metric inflation; control-plane health hysteresis

prevents flapping.
o Open Source and Community Contributions:

Dashboard publication (Grafana); CoreDNS plugin proposal for health-aware forwarder;
eBPF/Go example write-up; potential miekg/dns optimizations.

Reporting and Standards Mapping:

» Standards Reference:

o RFC 1034/1035 — DNS Fundamentals — Internet Standard — Validates proxy correctness
(IDs, opcodes, RCODE, section integrity).

o RFC 6891 — EDNSO — Proposed Standard — Proxies OPT records and payload size,
ensures modern resolver compatibility.

o RFC 7871 — ECS — Proposed Standard — Future: Forward ECS for geo-aware routing
alignment.

o RFC 8484/7858/9250 — DoH/DoT/DoQ — Proposed/Internet Standards — Future: Edge
termination with userspace policy and UDP upstream.

+ Impact on Standards Development:

o Supports existing RFCs by demonstrating operational behaviors for high-QPS DNS
proxying with telemetry; contributes metrics and dashboards aligned with dnsop
telemetry discussions; plans to share datasets and configuration examples.

o Next steps: Publish Grafana dashboard JSON; open issues/PRs to CoreDNS/miekg/dns;
summarize telemetry approach to dnsop; document ECS/EDNSO handling nuances.

« References:

RFC 1034

RFC 1035

RFC 6891

RFC 7871

RFC 8484

RFC 7858

RFC 9250

AIORI testbed documentation and dnsop/add WGs.

 Acknowledgments:

A Sincere Thanks to all the mentors, AIORI committee, participating institutions, and
open-source communities (miekg/dns, CoreDNS, cilium/ebpf, Prometheus/Grafana) supporting
this work.

¢ Reflections from the Team:

o Preserving DNS correctness (RFC 1034/1035, EDNSO) mattered more than raw speed;
transparency first, optimization next.

o Separating XDP fast path from the Go control plane made iteration safe and debugging
practical.
Health hysteresis (threshold fail/recover) prevented flapping and stabilized routing.

o Building observability first (QPS, drops, per-backend load, CPU/GC) accelerated
performance tuning.

o Round-robin proved a reliable baseline; only then did weighted/latency/geo policies
make sense to pursue.

e Contact:

Lead Author: Balachandhar D, Buvanesh D
Email: balachandhar2005@gmail.com , buvaneshdevaraj@gmail.com
Mentor: Mr. Dinesh kumar A, Associate Professor, St.Joseph’s Institute of Technology

0O 0 0 0o 0o 0 o o

