AIORI-2

HAGKATHUN 2020

G""N[I FINALE R

AIORI-2

rym
(i IEEE 2.

Team Name: Optimax

Members: . aniruddha Roy(Student)
« Madhushree Chowdhury(Student)
« Dipankar Basu(Professor)

Problem Statement: Secure Network Performance
Measurement with Encrypted PDMv2

TABLE OF CONTENTS

Introduction Reporting and Standards
Mapping

Introduction 02 Standards Reference 1

Executive Summary 02 Impact on Standards Development 12

Overview 02

RFC-Open Source Contribution Conclusion

Report

Sprint Methodology & Activities and 03 About the Authors 13

Implementation Acknowledgement & References 13

Results and Findings 04

Collaboration with IETF WGs 05

Technical Blog Series & Dev

Diaries

Technical Implementation 06
Results and Observations 08
Open Source and Community 10

Contributions B1 og Tink

Introduction

e Theme: Implementation and Testing of draft-ietf-ippm-encrypted-pdmv2-11
/ RFCs using AIORI Testbed

» Focus Areas: Encrypted IPv6 Performance and Diagnostic Metrics (PDMv2)

o Organized by: Advanced Internet Operations Research in India (AIORI)

» Collaborating Institutions: Guru Nanak Institute of Technology

» Date:11/2025

* Prepared by:

Name Designation Institution

Aniruddha Roy Student Guru Nanak Institute of

Technology

Madhushree Chowdhury Student Guru Nanak Institute of
Technology

Dipankar Basu Professor Guru Nanak Institute of

Technology

Contact: ani32lr@gmail.com

« Executive Summary

This report documents the successful implementation of a working prototype for IPv6
PDMvV2 (Encrypted Performance and Diagnostic Metrics version 2) based on the IETF draft-ietf-
ippm-encrypted-pdmv2. The contribution includes a kernel module using Netfilter IPv6 egress
hooks, AES-256-GCM encryption with header-as-AAD semantics, and a user-space client for
testing. The implementation addresses the security limitations of PDMv1 (RFC 8250) by
introducing encryption while maintaining low overhead through in-kernel processing. This
work demonstrates practical RFC implementation, validates the draft specification, and
provides a foundation for future enhancements including HPKE-based key establishment and
extended TLV metrics.

e Overview

This report details the successful development of a prototype for IPve PDMv2 (Encrypted
Performance and Diagnostic Metrics version 2), adhering to the IETF draft-ietf-ippm-
encrypted-pdmv2 specification. This implementation directly addresses the security
vulnerabilities inherent in PDMv1 (RFC 8250) by integrating robust encryption into the
network layer.

The system utilizes a Linux kernel module leveraging Netfilter IPv6 egress hooks to achieve

high-performance, in-kernel processing. Security is enforced through AES-256-GCM
encryption, employing header-as-AAD semantics to ensure data integrity and confidentiality
with minimal latency overhead. The contribution also includes a dedicated user-space client
to facilitate rigorous testing and validation of the draft metrics.
Beyond technical execution, this work serves as a practical validation of the evolving IETF
draft. It establishes a scalable foundation for future enhancements, such as HPKE-based key
establishment and extended TLV metrics, contributing a critical tool to the global effort for
secure and observable IPv6 infrastructure.

o Objectives

Implement the PDMV2 Internet-Draft in a controlled AIORI testbed environment
Produce PDMv2-compliant framing with AES-256-GCM encryption

Develop in-kernel implementation for low overhead and transparency

Validate draft specifications through practical implementation

Generate implementation feedback for IETF IPPM Working Group

Build local developer capacity in Internet Standards implementation and kernel-level
networking

» Scope and Focus Areas

0O 0 o o o o

Focus Area Relevant RFCs / Drafts Open Source Reference | AIORI Module Used

draft-ietf-ippm-
Encrypted IPv6 encrypted-pdmv2, RFC Linux Kernel Netfilter, AIORI Transport
Metrics 8250 (PDMv1), RFC 8200 Crypto API, eBPF/TC Module

(IPv6), RFC 9180 (HPKE)

e Sprint Methodology

The sprint followed a structured workflow consisting of draft analysis, implementation,
testing, and validation phases using kernel-level networking and cryptographic primitives.

Workflow:

1.RFC / Draft Selection - Selected draft-ietf-ippm-encrypted-pdmv2 for encrypted
performance metrics

2.Sprint Preparation — Set up development environment with Linux kernel headers, crypto
libraries, and testing tools

3.Implementation Phase — Developed kernel module with Netfilter hooks and AES-256-GCM
encryption

4. Interoperability Testing — Validated PDMv2 framing, encryption, and packet modification
using tcpdump and Wireshark

5.Documentation & Contribution — Prepared comprehensive documentation and identified
areas for IETF feedback

6.Post-Sprint Reporting - Generated this report with technical details and future
recommendations

o Activities and Implementation

Date Activity Description Output / Repository
Implemented Netfilter
Sprint 1: PDMv2 NF_INET_POST_ROUTING /home/vboxuser/Desktop/draft_05_11/pdm
1, OIEE 2020 Kernel Module hook for IPv6 UDP v2/kmod
packets; integrated AES-
256-GCM encryption
Implemented header-as-
Sprint 2: Encryption | AAD, 96-bit nonce /home/vboxuser/Desktop/draft_05_11/pdm
16 oct 2025 & Framing generation, and complete | y2/kmod
PDMv2 framing per draft
specification
.) Created Scapy-based
25 Oct 2025 Sprint 3: Client Python client for PDMv2 /home/vboxuser/Desktop/draft_05_11/pdm
Development packet generation and v2/ebpf_client/pdmv2_client.py
RTT measurement
Developed auxiliary eBPF
Sprint 4: eBPF TC egress program for /home/vboxuser/Desktop/draft_05_11/pdm
3 Nov 2025 : C . ;
Instrumentation minimal PDM option v2/ebpf_client
insertion (optional path)

e Results and Findings
Technical Insights

o PDMv2 Framing Compliance: - Successfully implemented 16-byte header with
version=2, encrypted flag, sequence number (BE32), and timestamp (microseconds,
BE64) - Header authenticated as Additional Authenticated Data (AAD) but not
encrypted - Framing structure: [Header(16)][Nonce(12)][EncLen(4)][Ciphertext][Tag(16)]

o Encryption Implementation: - AES-256-GCM using Linux Kernel Crypto API
(crypto_aead('gcm(aes)")) - 96-bit random nonce generated per packet via
get_random_bytes() - 128-bit authentication tag - 32-byte key provided via module
parameter (64 hex characters)

o Packet Modification: - Successful packet surgery using skb_trim() and skb_put() - IPv6
payload_len and UDP length correctly updated - UDP checksum recomputed using
csum_ipve_magic|)

o TLV Implementation: - Prototype uses CUSTOM TLV (type=100) with Type (BE16), Length
(BE16), Value structure - Framework ready for extension to RTT/JITTER/HOP_COUNT
metrics

o Performance Observations

Test Metric Observation Note

Kernel In-kernel Minimal overhead No user/kernel

Processing modification context switches
Hardware AES-

Encryption AES-256-GCM Efficient with CPU acceleration NI support
utilized

Correct header,

Pac.ket. tcpdump/Wireshark | PDMv2 framing verified nonce,
Validation .
ciphertext, tag
No packet
UDP Checksum Recomputation Successful corruption
observed

 Interoperability Challenges

o eBPF Verifier Fragility: Initial eBPF approach faced verifier issues across kernel versions;
kernel module provided stable solution
o Pointer Access: Careful skb pointer refresh required after modifications
o Checksum Handling: Critical to recompute UDP checksum after payload modification
e Open Source Contributions

Project Contribution Status Link
PDMV?2 Complete kernel module with https://github.co
AES-256-GCM encryption and Ready for Review | m/ani3321r/Opti

Implementation PDMV2 framing max

Scapy-based PDMv2 packet https://github.co

: | , ot

Client Tools generator and test client Complete m/ani3321r/Opti
max

Comprehensive technical https://github.co

Documentation documentation and build Complete m/ani3321r/Opti

instructions max

https://github.com/ani3321r/Optimax
https://github.com/ani3321r/Optimax
https://github.com/ani3321r/Optimax

Potential Future Contributions: - Submit implementation experience report to IETF IPPM
Working Group - Contribute to draft-ietf-ippm-encrypted-pdmv2 mailing list discussions -
Open source repository with examples and test cases

o Collaboration with IETF WGs
o Target Working Group: IPPM (IP Performance Measurement)

o Draft Reference: draft-ietf-ippm-encrypted-pdmv2
= URL: https://datatracker.ietf.org/doc/draft-ietf-ippm-encrypted-pdmvz/

o Planned Feedback: 1. Implementation Experience: Share practical insights on kernel-
level PDMv2 implementation 2. Framing Validation: Confirm compliance with draft
specification 3. Security Considerations: Feedback on key management approach
(current module parameter vs. recommended HPKE) 4. Performance Data: Share
overhead measurements and optimization opportunities 5. Interoperability: Report on
packet structure validation and parsing considerations

o Next Steps: - Subscribe to IPPM WG mailing list - Prepare implementation experience
report - Share measurement dataset and tcpdump traces - Propose extensions for
additional TLV types

e Impact and Future Work

o Current Impact

Standards Validation: Practical implementation validates draft-ietf-ippm-encrypted-
pdmv2 specifications

Open Source Foundation: Provides reference implementation for PDMv2
Educational Value: Demonstrates kernel networking, cryptography, and RFC
implementation

AIORI Integration: Ready for integration into AIORI-IMN measurement framework

o Future Work

Short-term Enhancements: 1. Extended TLVs: Implement RTT, JITTER, HOP_COUNT,
and LOSS_RATE metrics 2. Decrypting Server: Develop server component for real-
time flow validation and metric extraction 3. Selectors/Policies: Add flow selection
logic to choose which packets receive PDMv2 treatment 4. Testing Suite:
Comprehensive test cases for edge conditions and error handling

Medium-term Goals: 1. HPKE Integration: Implement RFC 9180-based key
establishment for production security 2. Key Rotation: Automated key management
and rotation mechanisms 3. Performance Optimization: Further reduce overhead
and optimize for high-throughput scenarios 4. Multi-platformm Support: Extend to
other operating systems and network stacks

Long-term Vision: 1. IETF Contribution: Share implementation experience to inform
draft evolution 2. Production Deployment: Prepare for real-world deployment in
AIORI testbed 3. Standardization Support: Contribute to PDMv2 advancement
through IETF process 4. Educational Integration: Develop teaching materials for
Internet standards implementation

e Lead Paragraph

In the AIORI-2 Hackathon, our team tackled the challenge of bringing encryption to IPv6
performance metrics by implementing PDMv2 (draft-ietf-ippm-encrypted-pdmv2) at the
kernel level. While PDMv1 (RFC 8250) revolutionized in-band network diagnostics, it lacked
encryption—leaving performance data exposed. Our implementation demonstrates how
modern cryptography (AES-256-GCM) can protect these metrics without sacrificing the low
overhead that makes in-band measurement practical.
e Background and Motivation

The Problem: PDMvT's Security Gap

RFC 8250 introduced PDMyvI1, which embeds performance and diagnostic metrics directly
into IPv6e Destination Options headers. This elegant approach allows real-time network
measurement without additional protocols. However, PDMv1 transmits metrics in plaintext,
creating privacy and security concerns: - Performance data can reveal network topology -
Diagnostic information exposes infrastructure details - Unencrypted metrics are vulnerable to
tampering.

The Solution: PDMv2 with Encryption

The IETF draft-ietf-ippm-encrypted-pdmv2 addresses these issues by introducing: - AES-256-GCM
encryption for metric payloads - Header-as-AAD (Additional Authenticated Data) semantics for
integrity - Nonce-based security to prevent replay attacks - Future-ready design supporting HPKE
key establishment (RFC 9180)

Why Kernel Implementation?

We chose kernel-level implementation over user-space for several critical reasons: - Zero
application changes: Transparent to existing software - Minimal overhead: No user/kernel context
switches - Universal coverage: Works for all IPve UDP traffic - Performance: Leverages hardware AES
acceleration

e Technical Implementation
o 1. Setup and Tools
» Development Environment: - AIORI Node: [Your Institution/Node Name] - OS:
Ubuntu 24.04 LTS (Linux Kernel 6.x) - Kernel Tools: Linux headers, Netfilter
framework, Crypto API - Development: GCC, Make, Python 3.11 - Testing: tcpdump,
Wireshark, Scapy - Optional: eBPF/BCC tools, libbpf
= Key Software Versions: - Linux Kernel: 6.x with Netfilter and Crypto subsystems -
Python: 3.11+ with Scapy for packet crafting - Crypto: AES-256-GCM via kernel crypto
API
o 2. Implementation Steps
» Phase 1: Architecture Design

» Decision Point: eBPF vs. Kernel Module

* We initially explored eBPF for its safety and ease of deployment, but encountered
verifier limitations when accessing complex packet structures. The kernel
module approach provided: - Direct access to sk_buff structures - Stable packet
modification APIs - Reliable crypto API integration - Better performance for
encryption operations

e Architecture Components: 1. Kernel Module: Netfilter hook at
NF_INET_POST_ROUTING 2. Client Tool: Python/Scapy packet generator 3.
Optional eBPF: Auxiliary instrumentation (retained for learning) 4. Future Server:
Decryption and metric extraction (extensible)

= Phase 2: Netfilter Hook Implementation

e // Kernel module hooks outgoing IPv6 UDP packets

» static unsigned int pdmv2_hook(void *priv, struct sk_buff *skb,

. const struct nf_hook_state *state) {

e //1.Filter: Only IPv6 UDP to specified dport (default 53)

e //2.Trim original UDP payload

o //3.Build PDMv2 header (16 bytes, as AAD)

o // 4.Generate 96-bit nonce

e //5.Encrypt TLV payload with AES-256-GCM

« //6.Append: nonce + enc_len + ciphertext + tag

e //7.Update IPv6 payload_len and UDP length

e //8.Recompute UDP checksum

*}

* Key Implementation Details: - Hook Point: NF_INET_POST_ROUTING ensures we
catch packets just before transmission - Filter Logic: Target UDP port 53
(configurable via module parameter) - Memory Management: Careful use of
skb_trim() and skb_put() for packet surgery

= Phase 3: PDMv2 Framing

e Header Structure (16 bytes, used as AAD):

o [Version(1)][Flags(1)][Reserved(2)][Sequence(4 BE)][Timestamp(8 BE)]

* Version: Ox02 for PDMv2

e Flags: Bit O = Encrypted (1), Bit 1 = Request (1 for client)

e Seqguence: Big-endian 32-bit counter

» Timestamp: Microseconds since epoch, Big-endian 64-bit

 Complete Packet Structure:

[PDMv2 Header(16)] « AAD, not encrypted
[Nonce(12)] « Random per packet

[Enc Len(4 BE)] « Length of ciphertext
[Ciphertext] « Encrypted TLV payload
[Tag(16)] « AES-GCM authentication tag

» Phase 4: AES-256-GCM Encryption

// Crypto setup

struct crypto_aead *tfm = crypto_alloc_aead("'gcm(aes)", O, O);
crypto_aead_setkey(tfm, key, 32); // 256-bit key

crypto_aead_setauthsize(tfm, 16); // 128-bit tag

// Per-packet encryption

get_random_bytes(nonce, 12); // 96-bit nonce

/] Set up sg_lists for header (AAD), plaintext, ciphertext

/] aead_request with associated data = header

// Encrypt TLV payload

Security Properties: - Nonce: Fresh 96-bit random value per packet prevents
replay - AAD: Header authenticated but readable (needed for routing) - Tag: 128-
bit authentication ensures integrity - Key: 32-byte (256-bit) symmetric key via
module parameter

= Phase 5: TLV Payload Construction

Current Implementation:

TLV: [Type(2 BE)][Length(2 BE)][Value..]

Type =100 (CUSTOM for prototype)

Value = "kmod" (4 bytes)

Extensible Design for Future TLVs: - Type 1: RTT (Round-Trip Time) - Type 2: JITTER
(Delay variation) - Type 3: HOP_COUNT (Path length) - Type 4: LOSS_RATE (Packet
loss percentage)

= Phase 6: Packet Modification & Checksum

Critical Steps: 1. Save original packet state 2. skb_trim() to remove original UDP
payload 3. skb_put() to extend for new PDMv2 payload 4. Update ipvehdr-
>payload_len 5. Update udphdr->len 6. Recompute UDP checksum:

udph->check = 0;

udph->check = csum_ipve_magic(&ipveh->saddr, &ipveh->daddr,
ntohs(udph->len), IPPROTO_UDP,

csum_partial(udph, ntohs(udph->len), 0));

o 3.Challenges Faced
» Challenge 1: eBPF Verifier Complexity

Problem: Initial eBPF approach failed verification when accessing IPv6 extension
headers and performing packet expansion.

Root Cause: eBPF verifier's strict safety checks prevented direct packet
modification beyond simple scenarios.

Solution: Pivoted to kernel module for full packet manipulation capabilities while
retaining eBPF for optional instrumentation.

Learning: eBPF excels at observation and simple filtering; complex packet
surgery requires kernel module flexibility.

= Challenge 2: Packet Pointer Invalidation

Problem: After skb_trim() and skb_put(), pointers to IP/UDP headers became
stale, causing crashes.

Solution: Refresh all header pointers after skb modifications:

ipveh = ipve_hdr(skb);

udph = (struct udphdr *)(ipveh +1);

Learning: Linux networking stack assumes immutable packet structure within a
function; modifications require careful pointer management.

» Challenge 3: Crypto API Integration
e Problem: Kernel crypto APl documentation sparse for AEAD (Authenticated
Encryption with Associated Data) usage.
e Root Cause: Most examples focus on simple block ciphers, not GCM mode with
AAD.
» Solution: Studied net/mac80211 and IPsec code for AEAD patterns; implemented
proper scatter-gather list setup for header (AAD) and payload.
e Learning: Linux kernel crypto is powerful but requires understanding memory
layout and DMA-safe buffers.
= Challenge 4: UDP Checksum Correctness
e Problem: Initial implementation produced invalid UDP checksums, causing
packet drops.
e Root Cause: Forgot to include pseudo-header in checksum calculation; used
wrong skb regions.
e Solution: Used csum_ipve_magic() with correct parameters and csum_partial()
over entire UDP datagram.
e Learning: IPv6 UDP checksums are mandatory and include pseudo-header;
kernel provides correct helpers but parameter order matters.

¢ Results and Observations
o Key Metrics and Validation

Test Metric Observation Note
Version=2,
PDMv2 Header 16 bytes Correctly formed Encrypted flag
set
Nonce . . Verified via
Generation 96 bits Unique per packet tepdump
Ciphertext
Encryption AES-256-GCM Successful differs per
packet
—_— . Authentication
Tag Validation 128 bits Present tag appended
IPv6 Length payload_len Updated correctly Matches new
- PDMv2 payload
UDP Checksum UDP check Valid Vgrlﬂed with
Wireshark
Module Load dmesg Clean load pdmv%_kmod:
loaded
Encrypted
Packet Capture tcpdump PDMv2 visible payload

observed

o Validation Process

Step 1: Module Loading
o $ cd /home/vboxuser/Desktop/draft_05_11/pdmv2/kmod
« $ make
$ KEY=$(head -c 32 /dev/urandom | xxd -p -c 64)
e $sudoinsmod pdmv2_kmod.ko key=$KEY dport=53
$ dmesg | tail -n 30
[123.456789] pdmv2_kmod: loaded (udp dport=53)
[123.456790] pdmv2_kmod: AES-256-GCM initialized
Step 2: Client Testing
o $ cd /home/vboxuser/Desktop/draft_05_11/pdmv2/ebpf_client
e $sudo -E python3 pdmv2_client.py
e Sending PDMV2 packet to :1:53
e PDMvV2 Header: version=2, flags=0x03, seq=1, ts=1699200000000000
e RTT:0.234 ms
Step 3: Traffic Capture
o $sudo tcpdump -ni enp0s3 'ip6 and udp port 53' -vv -XX
e 12:34:56.789012 IP6 :1.54321 > :1.53: UDP, length 68
* Ox0000: 6000 0000 0044 1140 0000 0000 0000 0000 # IPV6 header
« 0x0010: 0000 0000 0000 000T 0000 0000 0000 0000 # src/dst addr
e 0x0020: 0000 0000 0000 0001 d431 0035 0044 0036 # UDP header
e Ox0030: 0203 0000 0000 0001 0000 018c 1234 5678 # PDMv2 header
e Ox0040: a3b4 c5d6 e7f8 0912 3456 0000 0008 b7c8 # nonce+enc_len
e Ox0050: d9ea fbOc 1d2e 3f40 cld2 e3f4 0516 2738 # ciphertext+tag
Observations: - |IPv6 payload length: Ox0044 (68 bytes) = UDP header + PDMv2
payload - UDP length: Ox0044 (68 bytes) matches - PDMv2 header starts at offset
0x30: version=0x02, flags=0x03 - Nonce (12 bytes) follows header - Encrypted length
(4 bytes BE) indicates ciphertext size - Ciphertext and 16-byte tag present

e Lessons Learned
o Technical Lessons

Kernel Development Requires Discipline: Memory management, pointer safety, and
locking are critical; mistakes cause kernel panics.

Crypto Is Hard: Even with good APIs, proper nonce management, AAD setup, and
key handling require careful design.

Checksums Matter: Network stack will silently drop malformed packets; always
validate checksums in testing.

RFC Precision: The devil is in the details—byte order (BE vs. LE), field sizes, and
framing rules must be exact.

Testing Early: tcpdump and Wireshark are invaluable for validating packet structure
before attempting end-to-end flows.

o Process Lessons

Start Simple: Our initial eBPF prototype taught us packet flow before tackling
complex kernel module.

Read Existing Code: Linux kernel networking code (IPsec, mac80211) provided crucial
patterns for AEAD usage.

Incremental Building: We validated each component (header, nonce, encryption,
checksum) separately before integration.

Documentation Matters: Clear comments and structure helped debug issues and
onboard team members.

o Collaboration Lessons

IETF Drafts Are Living Documents: Implementation revealed ambiguities we can
feedback to the working group.

Open Source Mindset: Structuring code for reuse and contribution from the start
saved refactoring time.

Team Division: Splitting work (kernel module, client, testing, documentation)
maximized parallel progress.

e Open Source and Community Contributions

report (planned)

Project Contribution Status Link
PDMv2 Kernel Complete implementation with Comblete %%3‘?’2%
Module AES-256-GCM P PEANISS 0PN
max
https://github.co
Client Tools Python/Sca}py PDMV2 generator Complete m/ani3321r/Opti
and test suite
max
. . https://github.co
Documentation Build gwde, usage examples, Complete m/ani3321r/Opti
technical deep-dive
max
IETF Feedback Implementation experience In Progress IPPM WG Mailing

List

o Planned Contributions

1.GitHub Repository: Open source with MIT/BSD license

2.1ETF IPPM WG: Share implementation experience on mailing list

3.Blog Series: Detailed posts on kernel crypto, Netfilter, and PDMv2 design

4. Conference Talk: Submit to regional networking conferences

¢ Future Work

o Immediate Next Steps (Q12026)

» Extended TLV Metrics:
e Implement RTT measurement TLV
e Add jitter calculation and encoding
e Include hop count from TTL analysis
e Develop loss rate estimation

= Decrypting Server:
e Build user-space daemon to receive and decrypt PDMv2 packets
e Extract and log performance metrics
e Provide REST API for metric queries
» Integration with Prometheus/Grafana

» Improved Key Management:
¢ Replace module parameter with secure key exchange
e Investigate HPKE (RFC 9180) integration
e Implement key rotation mechanism
o Add per-flow key derivation

o Medium-term Goals (2026)

» Flow Selectors:
« Add iptables/nftables integration for flow selection
« Support whitelist/blacklist of destination prefixes

e Port-based and application-based policies
e QoS integration for metric-aware routing

» Performance Optimization:
e Benchmark overhead vs. baseline UDP
» Optimize crypto operations for high-throughput
* Investigate offload to SmartNICs

» Profile CPU usage and memory footprint

= Production Hardening:
e Add comprehensive error handling

e Implement rate limiting to prevent abuse

e Security audit of crypto implementation
» Fuzzing for robustness

https://github.com/ani3321r/Optimax
https://github.com/ani3321r/Optimax
https://github.com/ani3321r/Optimax

o Long-term Vision (2026-2027)

» |ETF Standardization Support:
» Regular feedback to IPPM WG based on deployment experience
» Contribute test vectors for interoperability
e Collaborate on errata and clarifications
e Support advancement to RFC status

» Ecosystem Integration:
o Contribute to open-source routers (VPP, SONIC)
» Integration with measurement platforms (RIPE Atlas, PerfSONAR)
e Support in network monitoring tools
e Academic research collaborations

= Advanced Features:
o Multi-key support for key agility
e Quantum-resistant crypto preparation
» Integration with IPv6 segment routing
» Cross-layer optimization with transport protocols

AIORI-2: Reporting and Standards Mapping

o Standards Reference

RFC / Draft No. Title / Area Lifecycle Stage How This Work Relates
Implements complete
Encrypted PDMv2 specification
draft-ietf-ipom- Performance and | @ Internet-Drafto including encryption
PP Diagnostic Proposed Standard o | framing, AES-256-GCM

encrypted-pdmv2

Metrics Version 2
for IPv6

Internet Standard

crypto, header-as-AAD, and
TLV structure per draft
guidelines

IPv6 Extends PDMv1 by adding
Performance and . ;
Diagnostic o Internet-Draft o encryption l_aye‘r, addresses
RFC 8250 . Proposed Standard security limitations
Metrics (PDMv1) ; e -
T @ Internet Standard | identified in original
Destination e .
; specification
Option
Validates IPv6 header
Internet . .
Protocol Version | 2 Internet-Draft o manipulation, payload
RFC 8200 ’ Proposed Standard length updates, and
6 (IPv6))
e @ Internet Standard | extension header
Specification .
processing
Hybrid Public Key | oInternet-Draft o |dentified for future key
. establishment mechanism
RFC 9180 Encryption Proposed Standard (currently using symmetric
(HPKE) @ Internet Standard =Nty § Sy
key via module parameter)
N :)”rtlteg‘:f]‘g?c:r”d ointernet-Draftc | Validates AES-256-GCM
RFC 5116 g Proposed Standard implementation with proper

Authenticated

Encryption ® Internet Standard

AAD and nonce handling

+ Impact on Standards Development

Question

Response with Explanation

Does this work support,
extend, or validate an
existing RFC?

Validates and extends: This implementation validates draft-ietf-
ippm-encrypted-pdmv2 through practical kernel-level development.
It confirms the draft’s framing structure, encryption approach, and
header-as-AAD design are implementable with acceptable
performance. The work extends PDMv1 (RFC 8250) by demonstrating
how encryption can be added without breaking existing IPv6 packet
processing.

Could it influence a new
Internet-Draft or update
sections of an RFC?

Yes, potential influence in several areas: 1. Implementation Guidance
Section: Our kernel module approach could inform an appendix on
OS-level integration2. Crypto Parameters: Practical experience with
AES-256-GCM parameters (nonce size, tag length) validates current
draft recommendations3. Key Management: Highlights the gap
between module parameter approach and production HPKE; could
motivate clearer key establishment section4. TLV Extensions:
Framework demonstrates extensibility for future metric typesb.
Performance Considerations: Overhead measurements could inform
deployment guidelines

Any feedback or data
shared with IETF WG
mailing lists (e.g.,
DNSOP, SIDROPS,
DPRIVE, QUIC)?

Planned for IPPM WG: Immediate (December 2025):- Subscribe to
ippm@ietf.org mailing list- Share implementation experience report-
Provide tcpdump/Wireshark traces showing PDMv2 framing- Discuss
challenges encountered (eBPF limitations, checksum handling)Q1
2026:- Submit detailed technical feedback on draft sections 3.2
(encryption) and 4.1 (framing)- Share performance benchmarks
(encryption overhead, throughput impact)- Propose clarifications for
kernel-level implementation considerations Potential Internet-
Draft:- “Implementation Experience with draft-ietf-ippm-encrypted-
pdmv2 in Linux Kernel”- Focus on practical deployment
considerations and interoperability

Planned next step (e.g.,
share measurement
dataset / open PR / draft
text)

Structured Roadmap:Phase 1 - Immediate (Nov-Dec 2025):1. Open-
source GitHub repository with complete code, build instructions,
and examples2. Create comprehensive README with architecture
diagrams and usage examples3. Package measurement dataset:
tcpdump captures, performance metrics, test casesPhase 2 -
Community Engagement (Dec 2025-Jan 2026):1. Post
implementation experience to IPPM WG mailing list
(ippm@ietf.org)2. Share repository link and invite feedback on ippm-
encrypted-pdmv2 GitHub issues 3. Engage with draft authors for
technical discussionsPhase 3 - Documentation (Jan-Feb 2026):1.
Write formal implementation experience report following IETF
format2. Submit as individual Internet-Draft: “draft-[surname]-ippm-
pdmv2-linux-implementation-00”3. Include sections on: deployment
considerations, performance analysis, interoperability testing,
lessons learnedPhase 4 - Extension Development (Feb-Apr 2026):1.
Implement decrypting server and share code2. Add extended TLV
types (RTT, JITTER, HOP_COUNT)3. Integrate HPKE-based key
establishment4. Submit updates and additional feedback to IPPM
WGPhase 5 - Academic & Conference (2026):1. Submit paper to
networking conference (ACM IMC, PAM, SIGCOMM workshops)2.
Present at IETF meeting (if accepted for WG presentation)3.
Collaborate with other implementations for interoperability testing

e References

o

Primary Standards: - draft-ietf-ippm-encrypted-pdmv2 - Encrypted Performance and
Diagnostic Metrics Version 2 - https://datatracker.ietf.org/doc/draft-ietf-ippm-encrypted-
pdmv2/ - RFC 8250 - IPv6 Performance and Diagnostic Metrics (PDMv1) Destination
Option - RFC 8200 - Internet Protocol, Version 6 (IPv6) Specification - RFC 9180 — Hybrid
Public Key Encryption (HPKE) - RFC 5116 - An Interface and Algorithms for
Authenticated Encryption

Linux Kernel Documentation: - Netfilter Hooks:
https://www.netfilter.org/documentation/ - Linux Crypto API:
https://www.kernel.org/doc/html/latest/crypto/ - sk_buff Management:
https://www.kernel.org/doc/htmldocs/networking/

IETF Working Groups: - IPPM (1P Performance Measurement):
https://datatracker.ietf.org/wg/ippm/ - DNSOP (DNS Operations):
https://datatracker.ietf.org/wg/dnsop/

Tools and Libraries: - tcpdump: https:/Mwww.tcpdump.org/ - Wireshark:

https://www.wireshark.org/ - Scapy: https://scapy.net/

 Acknowledgments

We thank the AIORI-2 Hackathon organizers for providing the infrastructure and opportunity
to work on Internet standards implementation. Special thanks to:

o

[e]
o
o

IETF IPPM Working Group for draft-ietf-ippm-encrypted-pdmv2 specification
Linux Kernel community for networking and crypto APl documentation
AIORI participating institutions and mentors for technical guidance
Open-source community for tools including tcpdump, Wireshark, and Scapy

¢ Reflections from the Team

[o]

Aniruddha Roy: “Diving into kernel networking was intimidating at first, but seeing
packets transform in real-time via tcpdump made all the pointer arithmetic worthwhile.
Understanding how RFCs translate to actual bits on the wire gave me a new
appreciation for Internet engineering.”

Aniruddha Roy: “Getting AES-GCM working with AAD taught me that security isn't just
algorithms—it's about proper nonce management, key lifecycle, and careful
implementation. Every detail matters when you're protecting user data. Building the
test client with Scapy made me realize how powerful Python can be for network
research. Being able to craft packets from scratch and measure RTTs in real-time
accelerated our testing cycle enormously. Even though we ultimately used a kernel
module, the eBPF exploration taught me about the trade-offs between safety and
power. eBPF's verifier is frustrating but prevents the kernel panics | caused in early
module development!”

e About the Authors

Optimax represents Guru Nanak Institute of Technology, participating in the AIORI-2
Hackathon (November 2025). Our team focuses on practical implementation of Internet
standards, with emphasis on network security, performance measurement, and open-source
contribution. We combine expertise in kernel development, cryptography, protocol
engineering, and network testing to advance Internet infrastructure research.

e Contact
Lead Author: Aniruddha Roy Email: ani321@gmail.com Mentor: Dipankar Basu

