
Secure Network Performance
Measurement with Encrypted PDMv2

Introduction

Executive Summary

Overview

Sprint Methodology & Activities and
Implementation
Results and Findings

Collaboration with IETF WGs

Technical Implementation

08Results and Observations

Open Source and Community
Contributions

Standards Reference

Impact on Standards Development

Introduction

02
02
02

RFC-Open Source Contribution
Report

03

04
05

Technical Blog Series & Dev
Diaries

06

10

Reporting and Standards
Mapping

11
12

About the Authors

Acknowledgement & References

Conclusion

13
13

Blog link

TABLE OF CONTENTS

Team Name:

Members:

Problem Statement:

Aniruddha Roy(Student)

Madhushree Chowdhury(Student)

Dipankar Basu(Professor)

Optimax

Name Designation Institution

Aniruddha Roy Student
Guru Nanak Institute of

Technology

Madhushree Chowdhury Student
Guru Nanak Institute of

Technology

Dipankar Basu Professor
Guru Nanak Institute of

Technology

Theme: Implementation and Testing of draft-ietf-ippm-encrypted-pdmv2-11
/ RFCs using AIORI Testbed

Focus Areas: Encrypted IPv6 Performance and Diagnostic Metrics (PDMv2)
Organized by: Advanced Internet Operations Research in India (AIORI)
Collaborating Institutions: Guru Nanak Institute of Technology
Date:11/2025
Prepared by:

Introduction

Contact: ani321r@gmail.com

 This report documents the successful implementation of a working prototype for IPv6
PDMv2 (Encrypted Performance and Diagnostic Metrics version 2) based on the IETF draft-ietf-
ippm-encrypted-pdmv2. The contribution includes a kernel module using Netfilter IPv6 egress
hooks, AES-256-GCM encryption with header-as-AAD semantics, and a user-space client for
testing. The implementation addresses the security limitations of PDMv1 (RFC 8250) by
introducing encryption while maintaining low overhead through in-kernel processing. This
work demonstrates practical RFC implementation, validates the draft specification, and
provides a foundation for future enhancements including HPKE-based key establishment and
extended TLV metrics.

Executive Summary

Overview
 This report details the successful development of a prototype for IPv6 PDMv2 (Encrypted
Performance and Diagnostic Metrics version 2), adhering to the IETF draft-ietf-ippm-
encrypted-pdmv2 specification. This implementation directly addresses the security
vulnerabilities inherent in PDMv1 (RFC 8250) by integrating robust encryption into the
network layer.
 The system utilizes a Linux kernel module leveraging Netfilter IPv6 egress hooks to achieve
high-performance, in-kernel processing. Security is enforced through AES-256-GCM
encryption, employing header-as-AAD semantics to ensure data integrity and confidentiality
with minimal latency overhead. The contribution also includes a dedicated user-space client
to facilitate rigorous testing and validation of the draft metrics.
Beyond technical execution, this work serves as a practical validation of the evolving IETF
draft. It establishes a scalable foundation for future enhancements, such as HPKE-based key
establishment and extended TLV metrics, contributing a critical tool to the global effort for
secure and observable IPv6 infrastructure.

Focus Area Relevant RFCs / Drafts Open Source Reference AIORI Module Used

Encrypted IPv6
Metrics

draft-ietf-ippm-
encrypted-pdmv2, RFC
8250 (PDMv1), RFC 8200
(IPv6), RFC 9180 (HPKE)

Linux Kernel Netfilter,
Crypto API, eBPF/TC

AIORI Transport
Module

 The sprint followed a structured workflow consisting of draft analysis, implementation,
testing, and validation phases using kernel-level networking and cryptographic primitives.
 Workflow:

1.RFC / Draft Selection – Selected draft-ietf-ippm-encrypted-pdmv2 for encrypted
performance metrics

2.Sprint Preparation – Set up development environment with Linux kernel headers, crypto
libraries, and testing tools

3. Implementation Phase – Developed kernel module with Netfilter hooks and AES-256-GCM
encryption

4.Interoperability Testing – Validated PDMv2 framing, encryption, and packet modification
using tcpdump and Wireshark

5.Documentation & Contribution – Prepared comprehensive documentation and identified
areas for IETF feedback

6.Post-Sprint Reporting – Generated this report with technical details and future
recommendations

Date Activity Description Output / Repository

11 Oct 2025
Sprint 1: PDMv2
Kernel Module

Implemented Netfilter
NF_INET_POST_ROUTING
hook for IPv6 UDP
packets; integrated AES-
256-GCM encryption

/home/vboxuser/Desktop/draft_05_11/pdm
v2/kmod

16 oct 2025
Sprint 2: Encryption
& Framing

Implemented header-as-
AAD, 96-bit nonce
generation, and complete
PDMv2 framing per draft
specification

/home/vboxuser/Desktop/draft_05_11/pdm
v2/kmod

25 Oct 2025
Sprint 3: Client
Development

Created Scapy-based
Python client for PDMv2
packet generation and
RTT measurement

/home/vboxuser/Desktop/draft_05_11/pdm
v2/ebpf_client/pdmv2_client.py

3 Nov 2025
Sprint 4: eBPF
Instrumentation

Developed auxiliary eBPF
TC egress program for
minimal PDM option
insertion (optional path)

/home/vboxuser/Desktop/draft_05_11/pdm
v2/ebpf_client

Objectives
Implement the PDMv2 Internet-Draft in a controlled AIORI testbed environment
Produce PDMv2-compliant framing with AES-256-GCM encryption
Develop in-kernel implementation for low overhead and transparency
Validate draft specifications through practical implementation
Generate implementation feedback for IETF IPPM Working Group
Build local developer capacity in Internet Standards implementation and kernel-level
networking

Scope and Focus Areas

Sprint Methodology

Activities and Implementation

Test Metric Observation Note

Kernel
Processing

In-kernel
modification

Minimal overhead
No user/kernel
context switches

Encryption AES-256-GCM Efficient with CPU acceleration
Hardware AES-
NI support
utilized

Packet
Validation

tcpdump/Wireshark PDMv2 framing verified
Correct header,
nonce,
ciphertext, tag

UDP Checksum Recomputation Successful
No packet
corruption
observed

Project Contribution Status Link

PDMv2
Implementation

Complete kernel module with
AES-256-GCM encryption and
PDMv2 framing

Ready for Review
https://github.co
m/ani3321r/Opti
max

Client Tools
Scapy-based PDMv2 packet
generator and test client

Complete
https://github.co
m/ani3321r/Opti
max

Documentation
Comprehensive technical
documentation and build
instructions

Complete
https://github.co
m/ani3321r/Opti
max

Results and Findings
 Technical Insights

PDMv2 Framing Compliance: - Successfully implemented 16-byte header with
version=2, encrypted flag, sequence number (BE32), and timestamp (microseconds,
BE64) - Header authenticated as Additional Authenticated Data (AAD) but not
encrypted - Framing structure: [Header(16)][Nonce(12)][EncLen(4)][Ciphertext][Tag(16)]
Encryption Implementation: - AES-256-GCM using Linux Kernel Crypto API
(crypto_aead("gcm(aes)")) - 96-bit random nonce generated per packet via
get_random_bytes() - 128-bit authentication tag - 32-byte key provided via module
parameter (64 hex characters)
Packet Modification: - Successful packet surgery using skb_trim() and skb_put() - IPv6
payload_len and UDP length correctly updated - UDP checksum recomputed using
csum_ipv6_magic()
TLV Implementation: - Prototype uses CUSTOM TLV (type=100) with Type (BE16), Length
(BE16), Value structure - Framework ready for extension to RTT/JITTER/HOP_COUNT
metrics

Performance Observations

Interoperability Challenges
eBPF Verifier Fragility: Initial eBPF approach faced verifier issues across kernel versions;
kernel module provided stable solution
Pointer Access: Careful skb pointer refresh required after modifications
Checksum Handling: Critical to recompute UDP checksum after payload modification

Open Source Contributions

https://github.com/ani3321r/Optimax
https://github.com/ani3321r/Optimax
https://github.com/ani3321r/Optimax

 Potential Future Contributions: - Submit implementation experience report to IETF IPPM
Working Group - Contribute to draft-ietf-ippm-encrypted-pdmv2 mailing list discussions -
Open source repository with examples and test cases

Collaboration with IETF WGs
Target Working Group: IPPM (IP Performance Measurement)

Draft Reference: draft-ietf-ippm-encrypted-pdmv2
URL: https://datatracker.ietf.org/doc/draft-ietf-ippm-encrypted-pdmv2/

Planned Feedback: 1. Implementation Experience: Share practical insights on kernel-
level PDMv2 implementation 2. Framing Validation: Confirm compliance with draft
specification 3. Security Considerations: Feedback on key management approach
(current module parameter vs. recommended HPKE) 4. Performance Data: Share
overhead measurements and optimization opportunities 5. Interoperability: Report on
packet structure validation and parsing considerations

Next Steps: - Subscribe to IPPM WG mailing list - Prepare implementation experience
report - Share measurement dataset and tcpdump traces - Propose extensions for
additional TLV types

Impact and Future Work
Current Impact

Standards Validation: Practical implementation validates draft-ietf-ippm-encrypted-
pdmv2 specifications
Open Source Foundation: Provides reference implementation for PDMv2
Educational Value: Demonstrates kernel networking, cryptography, and RFC
implementation
AIORI Integration: Ready for integration into AIORI-IMN measurement framework

Future Work
Short-term Enhancements: 1. Extended TLVs: Implement RTT, JITTER, HOP_COUNT,
and LOSS_RATE metrics 2. Decrypting Server: Develop server component for real-
time flow validation and metric extraction 3. Selectors/Policies: Add flow selection
logic to choose which packets receive PDMv2 treatment 4. Testing Suite:
Comprehensive test cases for edge conditions and error handling
Medium-term Goals: 1. HPKE Integration: Implement RFC 9180-based key
establishment for production security 2. Key Rotation: Automated key management
and rotation mechanisms 3. Performance Optimization: Further reduce overhead
and optimize for high-throughput scenarios 4. Multi-platform Support: Extend to
other operating systems and network stacks
Long-term Vision: 1. IETF Contribution: Share implementation experience to inform
draft evolution 2. Production Deployment: Prepare for real-world deployment in
AIORI testbed 3. Standardization Support: Contribute to PDMv2 advancement
through IETF process 4. Educational Integration: Develop teaching materials for
Internet standards implementation

Lead Paragraph
 In the AIORI-2 Hackathon, our team tackled the challenge of bringing encryption to IPv6
performance metrics by implementing PDMv2 (draft-ietf-ippm-encrypted-pdmv2) at the
kernel level. While PDMv1 (RFC 8250) revolutionized in-band network diagnostics, it lacked
encryption—leaving performance data exposed. Our implementation demonstrates how
modern cryptography (AES-256-GCM) can protect these metrics without sacrificing the low
overhead that makes in-band measurement practical.

Background and Motivation
 The Problem: PDMv1’s Security Gap
 RFC 8250 introduced PDMv1, which embeds performance and diagnostic metrics directly
into IPv6 Destination Options headers. This elegant approach allows real-time network
measurement without additional protocols. However, PDMv1 transmits metrics in plaintext,
creating privacy and security concerns: - Performance data can reveal network topology -
Diagnostic information exposes infrastructure details - Unencrypted metrics are vulnerable to
tampering.

 The Solution: PDMv2 with Encryption
 The IETF draft-ietf-ippm-encrypted-pdmv2 addresses these issues by introducing: - AES-256-GCM
encryption for metric payloads - Header-as-AAD (Additional Authenticated Data) semantics for
integrity - Nonce-based security to prevent replay attacks - Future-ready design supporting HPKE
key establishment (RFC 9180)
 Why Kernel Implementation?
 We chose kernel-level implementation over user-space for several critical reasons: - Zero
application changes: Transparent to existing software - Minimal overhead: No user/kernel context
switches - Universal coverage: Works for all IPv6 UDP traffic - Performance: Leverages hardware AES
acceleration

Technical Implementation
1. Setup and Tools

Development Environment: - AIORI Node: [Your Institution/Node Name] - OS:
Ubuntu 24.04 LTS (Linux Kernel 6.x) - Kernel Tools: Linux headers, Netfilter
framework, Crypto API - Development: GCC, Make, Python 3.11 - Testing: tcpdump,
Wireshark, Scapy - Optional: eBPF/BCC tools, libbpf
Key Software Versions: - Linux Kernel: 6.x with Netfilter and Crypto subsystems -
Python: 3.11+ with Scapy for packet crafting - Crypto: AES-256-GCM via kernel crypto
API

2. Implementation Steps
Phase 1: Architecture Design

Decision Point: eBPF vs. Kernel Module
We initially explored eBPF for its safety and ease of deployment, but encountered
verifier limitations when accessing complex packet structures. The kernel
module approach provided: - Direct access to sk_buff structures - Stable packet
modification APIs - Reliable crypto API integration - Better performance for
encryption operations
Architecture Components: 1. Kernel Module: Netfilter hook at
NF_INET_POST_ROUTING 2. Client Tool: Python/Scapy packet generator 3.
Optional eBPF: Auxiliary instrumentation (retained for learning) 4. Future Server:
Decryption and metric extraction (extensible)

Phase 2: Netfilter Hook Implementation
// Kernel module hooks outgoing IPv6 UDP packets
static unsigned int pdmv2_hook(void *priv, struct sk_buff *skb,
 const struct nf_hook_state *state) {
 // 1. Filter: Only IPv6 UDP to specified dport (default 53)
 // 2. Trim original UDP payload
 // 3. Build PDMv2 header (16 bytes, as AAD)
 // 4. Generate 96-bit nonce
 // 5. Encrypt TLV payload with AES-256-GCM
 // 6. Append: nonce + enc_len + ciphertext + tag
 // 7. Update IPv6 payload_len and UDP length
 // 8. Recompute UDP checksum
}
Key Implementation Details: - Hook Point: NF_INET_POST_ROUTING ensures we
catch packets just before transmission - Filter Logic: Target UDP port 53
(configurable via module parameter) - Memory Management: Careful use of
skb_trim() and skb_put() for packet surgery

Phase 3: PDMv2 Framing
Header Structure (16 bytes, used as AAD):
[Version(1)][Flags(1)][Reserved(2)][Sequence(4 BE)][Timestamp(8 BE)]
Version: 0x02 for PDMv2
Flags: Bit 0 = Encrypted (1), Bit 1 = Request (1 for client)
Sequence: Big-endian 32-bit counter
Timestamp: Microseconds since epoch, Big-endian 64-bit
Complete Packet Structure:

[PDMv2 Header(16)] ← AAD, not encrypted
[Nonce(12)] ← Random per packet
[Enc Len(4 BE)] ← Length of ciphertext
[Ciphertext] ← Encrypted TLV payload
[Tag(16)] ← AES-GCM authentication tag

Phase 4: AES-256-GCM Encryption
// Crypto setup
struct crypto_aead *tfm = crypto_alloc_aead("gcm(aes)", 0, 0);
crypto_aead_setkey(tfm, key, 32); // 256-bit key
crypto_aead_setauthsize(tfm, 16); // 128-bit tag
// Per-packet encryption
get_random_bytes(nonce, 12); // 96-bit nonce
// Set up sg_lists for header (AAD), plaintext, ciphertext
// aead_request with associated data = header
// Encrypt TLV payload
Security Properties: - Nonce: Fresh 96-bit random value per packet prevents
replay - AAD: Header authenticated but readable (needed for routing) - Tag: 128-
bit authentication ensures integrity - Key: 32-byte (256-bit) symmetric key via
module parameter

Phase 5: TLV Payload Construction
Current Implementation:
TLV: [Type(2 BE)][Length(2 BE)][Value...]
Type = 100 (CUSTOM for prototype)
Value = "kmod" (4 bytes)
Extensible Design for Future TLVs: - Type 1: RTT (Round-Trip Time) - Type 2: JITTER
(Delay variation) - Type 3: HOP_COUNT (Path length) - Type 4: LOSS_RATE (Packet
loss percentage)

Phase 6: Packet Modification & Checksum
Critical Steps: 1. Save original packet state 2. skb_trim() to remove original UDP
payload 3. skb_put() to extend for new PDMv2 payload 4. Update ipv6hdr-
>payload_len 5. Update udphdr->len 6. Recompute UDP checksum:
udph->check = 0;
udph->check = csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
 ntohs(udph->len), IPPROTO_UDP,
 csum_partial(udph, ntohs(udph->len), 0));

3. Challenges Faced
Challenge 1: eBPF Verifier Complexity

Problem: Initial eBPF approach failed verification when accessing IPv6 extension
headers and performing packet expansion.
Root Cause: eBPF verifier’s strict safety checks prevented direct packet
modification beyond simple scenarios.
Solution: Pivoted to kernel module for full packet manipulation capabilities while
retaining eBPF for optional instrumentation.
Learning: eBPF excels at observation and simple filtering; complex packet
surgery requires kernel module flexibility.

Challenge 2: Packet Pointer Invalidation
Problem: After skb_trim() and skb_put(), pointers to IP/UDP headers became
stale, causing crashes.
Solution: Refresh all header pointers after skb modifications:
ipv6h = ipv6_hdr(skb);
udph = (struct udphdr *)(ipv6h + 1);
Learning: Linux networking stack assumes immutable packet structure within a
function; modifications require careful pointer management.

Test Metric Observation Note

PDMv2 Header 16 bytes Correctly formed
Version=2,
Encrypted flag
set

Nonce
Generation

96 bits Unique per packet
Verified via
tcpdump

Encryption AES-256-GCM Successful
Ciphertext
differs per
packet

Tag Validation 128 bits Present
Authentication
tag appended

IPv6 Length payload_len Updated correctly
Matches new
PDMv2 payload

UDP Checksum UDP check Valid
Verified with
Wireshark

Module Load dmesg Clean load
“pdmv2_kmod:
loaded”

Packet Capture tcpdump PDMv2 visible
Encrypted
payload
observed

Challenge 3: Crypto API Integration
Problem: Kernel crypto API documentation sparse for AEAD (Authenticated
Encryption with Associated Data) usage.
Root Cause: Most examples focus on simple block ciphers, not GCM mode with
AAD.
Solution: Studied net/mac80211 and IPsec code for AEAD patterns; implemented
proper scatter-gather list setup for header (AAD) and payload.
Learning: Linux kernel crypto is powerful but requires understanding memory
layout and DMA-safe buffers.

Challenge 4: UDP Checksum Correctness
Problem: Initial implementation produced invalid UDP checksums, causing
packet drops.
Root Cause: Forgot to include pseudo-header in checksum calculation; used
wrong skb regions.
Solution: Used csum_ipv6_magic() with correct parameters and csum_partial()
over entire UDP datagram.
Learning: IPv6 UDP checksums are mandatory and include pseudo-header;
kernel provides correct helpers but parameter order matters.

Results and Observations
Key Metrics and Validation

Validation Process
Step 1: Module Loading

$ cd /home/vboxuser/Desktop/draft_05_11/pdmv2/kmod
$ make
$ KEY=$(head -c 32 /dev/urandom | xxd -p -c 64)
$ sudo insmod pdmv2_kmod.ko key=$KEY dport=53
$ dmesg | tail -n 30
[123.456789] pdmv2_kmod: loaded (udp dport=53)
[123.456790] pdmv2_kmod: AES-256-GCM initialized

Step 2: Client Testing
$ cd /home/vboxuser/Desktop/draft_05_11/pdmv2/ebpf_client
$ sudo -E python3 pdmv2_client.py
Sending PDMv2 packet to ::1:53
PDMv2 Header: version=2, flags=0x03, seq=1, ts=1699200000000000
RTT: 0.234 ms

Step 3: Traffic Capture
$ sudo tcpdump -ni enp0s3 'ip6 and udp port 53' -vv -XX
12:34:56.789012 IP6 ::1.54321 > ::1.53: UDP, length 68
0x0000: 6000 0000 0044 1140 0000 0000 0000 0000 # IPv6 header
0x0010: 0000 0000 0000 0001 0000 0000 0000 0000 # src/dst addr
0x0020: 0000 0000 0000 0001 d431 0035 0044 0036 # UDP header
0x0030: 0203 0000 0000 0001 0000 018c 1234 5678 # PDMv2 header
0x0040: a3b4 c5d6 e7f8 0912 3456 0000 0008 b7c8 # nonce+enc_len
0x0050: d9ea fb0c 1d2e 3f40 c1d2 e3f4 0516 2738 # ciphertext+tag

Observations: - IPv6 payload length: 0x0044 (68 bytes) = UDP header + PDMv2
payload - UDP length: 0x0044 (68 bytes) matches - PDMv2 header starts at offset
0x30: version=0x02, flags=0x03 - Nonce (12 bytes) follows header - Encrypted length
(4 bytes BE) indicates ciphertext size - Ciphertext and 16-byte tag present

Lessons Learned
Technical Lessons

Kernel Development Requires Discipline: Memory management, pointer safety, and
locking are critical; mistakes cause kernel panics.
Crypto Is Hard: Even with good APIs, proper nonce management, AAD setup, and
key handling require careful design.
Checksums Matter: Network stack will silently drop malformed packets; always
validate checksums in testing.
RFC Precision: The devil is in the details—byte order (BE vs. LE), field sizes, and
framing rules must be exact.
Testing Early: tcpdump and Wireshark are invaluable for validating packet structure
before attempting end-to-end flows.

Process Lessons
Start Simple: Our initial eBPF prototype taught us packet flow before tackling
complex kernel module.
Read Existing Code: Linux kernel networking code (IPsec, mac80211) provided crucial
patterns for AEAD usage.
Incremental Building: We validated each component (header, nonce, encryption,
checksum) separately before integration.
Documentation Matters: Clear comments and structure helped debug issues and
onboard team members.

Collaboration Lessons
IETF Drafts Are Living Documents: Implementation revealed ambiguities we can
feedback to the working group.
Open Source Mindset: Structuring code for reuse and contribution from the start
saved refactoring time.
Team Division: Splitting work (kernel module, client, testing, documentation)
maximized parallel progress.

Project Contribution Status Link

PDMv2 Kernel
Module

Complete implementation with
AES-256-GCM

Complete
https://github.co
m/ani3321r/Opti
max

Client Tools
Python/Scapy PDMv2 generator
and test suite

Complete
https://github.co
m/ani3321r/Opti
max

Documentation
Build guide, usage examples,
technical deep-dive

Complete
https://github.co
m/ani3321r/Opti
max

IETF Feedback
Implementation experience
report (planned)

In Progress
IPPM WG Mailing
List

Open Source and Community Contributions

Planned Contributions

1.GitHub Repository: Open source with MIT/BSD license
2.IETF IPPM WG: Share implementation experience on mailing list
3.Blog Series: Detailed posts on kernel crypto, Netfilter, and PDMv2 design
4.Conference Talk: Submit to regional networking conferences

Future Work
Immediate Next Steps (Q1 2026)

Extended TLV Metrics:
Implement RTT measurement TLV
Add jitter calculation and encoding
Include hop count from TTL analysis
Develop loss rate estimation

Decrypting Server:
Build user-space daemon to receive and decrypt PDMv2 packets
Extract and log performance metrics
Provide REST API for metric queries
Integration with Prometheus/Grafana

Improved Key Management:
Replace module parameter with secure key exchange
Investigate HPKE (RFC 9180) integration
Implement key rotation mechanism
Add per-flow key derivation

Medium-term Goals (2026)
Flow Selectors:

Add iptables/nftables integration for flow selection
Support whitelist/blacklist of destination prefixes
Port-based and application-based policies
QoS integration for metric-aware routing

Performance Optimization:
Benchmark overhead vs. baseline UDP
Optimize crypto operations for high-throughput
Investigate offload to SmartNICs
Profile CPU usage and memory footprint

Production Hardening:
Add comprehensive error handling
Implement rate limiting to prevent abuse
Security audit of crypto implementation
Fuzzing for robustness

https://github.com/ani3321r/Optimax
https://github.com/ani3321r/Optimax
https://github.com/ani3321r/Optimax

RFC / Draft No. Title / Area Lifecycle Stage How This Work Relates

draft-ietf-ippm-
encrypted-pdmv2

Encrypted
Performance and
Diagnostic
Metrics Version 2
for IPv6

☑ Internet-Draft ☐
Proposed Standard ☐
Internet Standard

Implements complete
PDMv2 specification
including encryption
framing, AES-256-GCM
crypto, header-as-AAD, and
TLV structure per draft
guidelines

RFC 8250

IPv6
Performance and
Diagnostic
Metrics (PDMv1)
Destination
Option

☐ Internet-Draft ☐
Proposed Standard
☑ Internet Standard

Extends PDMv1 by adding
encryption layer; addresses
security limitations
identified in original
specification

RFC 8200

Internet
Protocol, Version
6 (IPv6)
Specification

☐ Internet-Draft ☐
Proposed Standard
☑ Internet Standard

Validates IPv6 header
manipulation, payload
length updates, and
extension header
processing

RFC 9180
Hybrid Public Key
Encryption
(HPKE)

☐ Internet-Draft ☐
Proposed Standard
☑ Internet Standard

Identified for future key
establishment mechanism
(currently using symmetric
key via module parameter)

RFC 5116

An Interface and
Algorithms for
Authenticated
Encryption

☐ Internet-Draft ☐
Proposed Standard
☑ Internet Standard

Validates AES-256-GCM
implementation with proper
AAD and nonce handling

Long-term Vision (2026-2027)
IETF Standardization Support:

Regular feedback to IPPM WG based on deployment experience
Contribute test vectors for interoperability
Collaborate on errata and clarifications
Support advancement to RFC status

Ecosystem Integration:
Contribute to open-source routers (VPP, SONiC)
Integration with measurement platforms (RIPE Atlas, PerfSONAR)
Support in network monitoring tools
Academic research collaborations

Advanced Features:
Multi-key support for key agility
Quantum-resistant crypto preparation
Integration with IPv6 segment routing
Cross-layer optimization with transport protocols

AIORI-2: Reporting and Standards Mapping
Standards Reference

Question Response with Explanation

Does this work support,
extend, or validate an
existing RFC?

Validates and extends: This implementation validates draft-ietf-
ippm-encrypted-pdmv2 through practical kernel-level development.
It confirms the draft’s framing structure, encryption approach, and
header-as-AAD design are implementable with acceptable
performance. The work extends PDMv1 (RFC 8250) by demonstrating
how encryption can be added without breaking existing IPv6 packet
processing.

Could it influence a new
Internet-Draft or update
sections of an RFC?

Yes, potential influence in several areas: 1. Implementation Guidance
Section: Our kernel module approach could inform an appendix on
OS-level integration2. Crypto Parameters: Practical experience with
AES-256-GCM parameters (nonce size, tag length) validates current
draft recommendations3. Key Management: Highlights the gap
between module parameter approach and production HPKE; could
motivate clearer key establishment section4. TLV Extensions:
Framework demonstrates extensibility for future metric types5.
Performance Considerations: Overhead measurements could inform
deployment guidelines

Any feedback or data
shared with IETF WG
mailing lists (e.g.,
DNSOP, SIDROPS,
DPRIVE, QUIC)?

Planned for IPPM WG: Immediate (December 2025):- Subscribe to
ippm@ietf.org mailing list- Share implementation experience report-
Provide tcpdump/Wireshark traces showing PDMv2 framing- Discuss
challenges encountered (eBPF limitations, checksum handling)Q1
2026:- Submit detailed technical feedback on draft sections 3.2
(encryption) and 4.1 (framing)- Share performance benchmarks
(encryption overhead, throughput impact)- Propose clarifications for
kernel-level implementation considerations Potential Internet-
Draft:- “Implementation Experience with draft-ietf-ippm-encrypted-
pdmv2 in Linux Kernel”- Focus on practical deployment
considerations and interoperability

Planned next step (e.g.,
share measurement
dataset / open PR / draft
text)

Structured Roadmap:Phase 1 - Immediate (Nov-Dec 2025):1. Open-
source GitHub repository with complete code, build instructions,
and examples2. Create comprehensive README with architecture
diagrams and usage examples3. Package measurement dataset:
tcpdump captures, performance metrics, test casesPhase 2 -
Community Engagement (Dec 2025-Jan 2026):1. Post
implementation experience to IPPM WG mailing list
(ippm@ietf.org)2. Share repository link and invite feedback on ippm-
encrypted-pdmv2 GitHub issues 3. Engage with draft authors for
technical discussionsPhase 3 - Documentation (Jan-Feb 2026):1.
Write formal implementation experience report following IETF
format2. Submit as individual Internet-Draft: “draft-[surname]-ippm-
pdmv2-linux-implementation-00”3. Include sections on: deployment
considerations, performance analysis, interoperability testing,
lessons learnedPhase 4 - Extension Development (Feb-Apr 2026):1.
Implement decrypting server and share code2. Add extended TLV
types (RTT, JITTER, HOP_COUNT)3. Integrate HPKE-based key
establishment4. Submit updates and additional feedback to IPPM
WGPhase 5 - Academic & Conference (2026):1. Submit paper to
networking conference (ACM IMC, PAM, SIGCOMM workshops)2.
Present at IETF meeting (if accepted for WG presentation)3.
Collaborate with other implementations for interoperability testing

Impact on Standards Development

References
Primary Standards: - draft-ietf-ippm-encrypted-pdmv2 – Encrypted Performance and
Diagnostic Metrics Version 2 - https://datatracker.ietf.org/doc/draft-ietf-ippm-encrypted-
pdmv2/ - RFC 8250 – IPv6 Performance and Diagnostic Metrics (PDMv1) Destination
Option - RFC 8200 – Internet Protocol, Version 6 (IPv6) Specification - RFC 9180 – Hybrid
Public Key Encryption (HPKE) - RFC 5116 – An Interface and Algorithms for
Authenticated Encryption
Linux Kernel Documentation: - Netfilter Hooks:
https://www.netfilter.org/documentation/ - Linux Crypto API:
https://www.kernel.org/doc/html/latest/crypto/ - sk_buff Management:
https://www.kernel.org/doc/htmldocs/networking/
IETF Working Groups: - IPPM (IP Performance Measurement):
https://datatracker.ietf.org/wg/ippm/ - DNSOP (DNS Operations):
https://datatracker.ietf.org/wg/dnsop/
Tools and Libraries: - tcpdump: https://www.tcpdump.org/ - Wireshark:
https://www.wireshark.org/ - Scapy: https://scapy.net/

Acknowledgments
 We thank the AIORI-2 Hackathon organizers for providing the infrastructure and opportunity
to work on Internet standards implementation. Special thanks to:

IETF IPPM Working Group for draft-ietf-ippm-encrypted-pdmv2 specification
Linux Kernel community for networking and crypto API documentation
AIORI participating institutions and mentors for technical guidance
Open-source community for tools including tcpdump, Wireshark, and Scapy

Reflections from the Team
Aniruddha Roy: “Diving into kernel networking was intimidating at first, but seeing
packets transform in real-time via tcpdump made all the pointer arithmetic worthwhile.
Understanding how RFCs translate to actual bits on the wire gave me a new
appreciation for Internet engineering.”
Aniruddha Roy: “Getting AES-GCM working with AAD taught me that security isn’t just
algorithms—it’s about proper nonce management, key lifecycle, and careful
implementation. Every detail matters when you’re protecting user data. Building the
test client with Scapy made me realize how powerful Python can be for network
research. Being able to craft packets from scratch and measure RTTs in real-time
accelerated our testing cycle enormously. Even though we ultimately used a kernel
module, the eBPF exploration taught me about the trade-offs between safety and
power. eBPF’s verifier is frustrating but prevents the kernel panics I caused in early
module development!”

About the Authors
 Optimax represents Guru Nanak Institute of Technology, participating in the AIORI-2
Hackathon (November 2025). Our team focuses on practical implementation of Internet
standards, with emphasis on network security, performance measurement, and open-source
contribution. We combine expertise in kernel development, cryptography, protocol
engineering, and network testing to advance Internet infrastructure research.

Contact
Lead Author: Aniruddha Roy Email: ani321@gmail.com Mentor: Dipankar Basu

