HON 202!

EINA TR,
T 1,'.'-“ X 4 AIORI-2
. 0 ') 4

—— %R
Team Name: L8NCY

Members: . pamuru Ritesh Reddy (Student)
e Joel Tito (Student)
 Rakoth Kandan Ssambandam(Professor)

Problem Statement:Kubernetes CNI Benchmarking

TABLE OF CONTENTS

Introduction Reporting and Standards
Mapping
Introduction 02 Standards Reference 13
Executive Summary 02 Impact on Standards Development 14
Objrctives o2
RFC-Open Source Contribution Conclusion
Report
) About the Authors 14
Sprint Methodology 03
Acknowledgement & References 15
Activities and Implementation 05
Results and Findings 06

Technical Blog Series & Dev

Diaries

Collaboration with IETF WGs 08
Technical Implementation 09
Results and Observations 1

Blog Tink

Introduction

e Theme: Implementation and Testing of Selected Internet-Drafts / RFCs usingAIORI

Testbed

* Focus Areas: Cloud Infrastructure Benchmarking (Container Networking)
» Organized by: Advanced Internet Operations Research in India (AIORI)

e Collaborating Institutions: Christ University , Bengaluru

« Date:11/2025
* Prepared by:

Name

Designation

Institution

Pamuru Ritesh Reddy Student Christ University , Bengaluru
Joel Tito Student Christ University , Bengaluru
Rakoth Kandan Sambandam Professor Christ University , Bengaluru

Contact: pamuru.ritesh@btech.christuniversity.in , riteshpamuru@gmail.com 9866446161

e Executive Summary

This project presents a benchmarking study of Kubernetes Container Network Interfaces
(CNIs) Flannel, Calico, and Cilium conducted within the AIORI institutional cloud environment.
Using the methodology outlined in draft-ietf-omwg-containerized-infra by the IETF
Benchmarking Methodology Working Group (BMWG), the study measured key network
performance parameters including latency, throughput, jitter, and scalability under varying
pod densities and traffic loads. Identical Kubernetes clusters were configured for each CNI to
ensure fair and reproducible comparison. The benchmarking results revealed that Cilium,
leveraging its eBPF-based data path, achieved the lowest latency and highest throughput;
Calico demonstrated balanced performance and stability; while Flannel, though easy to
configure, showed higher latency due to encapsulation overhead. These findings validate the
BMWG benchmarking approach and provide actionable configuration recommendations for
optimizing container networking in academic and research cloud environments.

e Overview

This project benchmarks Kubernetes CNIs—Flannel, Calico, and Cilium—within the AIORI
cloud, adhering to the IETF BMWG methodology (draft-ietf-bmwg-containerized-infra).

Results indicate Cilium achieves superior throughput and latency via eBPF, outperforming
Calico and Flannel. These findings validate the benchmarking framework and offer actionable
configuration recommendations for optimizing container networking in research
environments.

mailto:pamuru.ritesh@btech.christuniversity.in
mailto:riteshpamuru@gmail.com

o Objectives

o Implement the benchmarking methodology from draft-ietf-bmwg-containerized-infra
on Kubernetes CNis like Flannel, Calico, and Cilium.

o Measure latency, throughput, jitter, and scalability under varying pod densities and
traffic loads.

o Compare performance across CNIs to identify strengths and limitations.

o Detects bottlenecks impacting containerized network performance.

o Automate the benchmarking process using AIORI Cloud Testbed scripts.

o Provide configuration recormmendations for academic and research cloud operators.
o Contribute benchmarking results and datasets to AIORI's open-source repository.

» Scope and Focus Areas

Relevant RFCs / Open Source
Drafts Reference

Focus Area AIORI Module Used

draft-ietf-bmwg-cont
ainerized-infra —
Kubernetes CNI Benchmarking
Benchmarking Methodology for
Containerized
Infrastructure

Kubernetes v1.30, AIORI Cloud
Flannel v0.25, Calico Benchmarking
v3.28, Cilium v1.16 Testbed

draft-ietf-bmwg-cont
ainerized-infra, RFC
2544

Cloud-Native (Benchmarking Prometheus, Grafana,
Network Performance | Methodology for iperf3, wrk2

Network
Interconnect
Devices)

AIORI Cloud
Benchmarking
Testbed

e Sprint Methodology

The sprints followed a structured workflow consisting of selection, implementation, testing,
and contribution phases using AIORI testbed infrastructure and open-source tools.

a. Workflow:
1.RFC / Draft Selection

i.Selected draft-ietf-bomwg-containerized-infra from the IETF Benchmarking
Methodology Working Group (BMWG) as the core reference document.

ii. Defined performance metrics latency, throughput, jitter, and scalability as described
in Section 5 of the draft.

iii.ldentified Kubernetes Container Network Interfaces (CNls) Flannel, Calico, and
Cilium as benchmarking targets.

iv.Chosen due to their distinct datapath architectures (VXLAN, routing, eBPF),
providing diverse test scenarios for validation.

b. Sprint Preparation:

1.Installed Docker Desktop on Windows and enabled the Kubernetes environment.
2.Set up Minikube and Kind (Kubernetes-in-Docker) to create isolated local clusters
for each CNI test.
3.Configured Kubernetes (v1.30) using containerd runtime and verified cluster node
health (kubectl get nodes).
4.Installed performance tools:
i.iperf3 » for throughput and latency testing
ii.ping » for basic connectivity verification
iii.wrk2 » for HTTP/UDP stress

c. testing Implementation Phase:

1.Deployed separate clusters in Kind for each CNI Flannel, Calico, and Cilium ensuring
clean network namespaces for fair comparison.

2.Configured networking add-ons manually within Minikube to simulate real
Kubernetes networking conditions.

3.Created and executed YAML manifests for test pods under varying pod densities
(20, 50, 100).

4. Used iperf3 between client-server pods to measure throughput and jitter under
both TCP and UDP traffic.

5.Used ping to record RTT latency and packet loss under sustained traffic.

6.Logged metrics and exported container statistics (docker stats) for CPU and
memory usage monitoring.

d. Interoperability Testing:

1.Verified pod-to-pod and cross-node communication for all CNIs under Docker and
Kind setups.

2.0bserved encapsulation behavior in Flannel (VXLAN) and BPF map interactions in
Cilium.

3.Checked compatibility of CNIs with Windows-based Docker hosts to ensure
consistent behavior with Linux-based documentation.

4 Performed network path tracing (traceroute and kubectl exec) to validate
connectivity layers.

5.Compared network plugin interoperability with Kubernetes DNS, service routing,
and load-balancing modules.

e. Documentation & Contribution:

1.Recorded all test configurations, Docker/Minikube commands, and metrics
collection steps.

2.Captured screenshots of test results (iperf3 outputs, latency graphs, and pod
communication).

3.Documented the complete benchmarking workflow in Markdown and summarized
results in tabular form.

4. Prepared visual comparisons using Excel and Grafana dashboards (where possible).

5.Uploaded configuration files, scripts, and documentation to a GitHub repository for
transparency and reproducibility.

f. Post-Sprint Reporting:

1.Consolidated all results into the AIORI-2 Hackathon Report Template.

2.Cross-referenced findings with draft-ietf-bmwg-containerized-infra to ensure
standard alignment.

3.Created comparative charts showing latency, throughput, and scalability for each
CNI.

4. Reviewed report content with Dr. Aditya Ghosh (AIORI Mentor) for validation.

5.Submitted the final report and repository link to AIORI for review and inclusion in
benchmarking archives.

e Activities and Implementation

Date

Activity

Description

Output / Repository

25/10/2025

Sprint 1: RFC
selection and
planning

Selected
draft-ietf-bomwg-cont
ainerized-infra.
Defined metrics
(latency, throughput,
jitter, scalability) and
finalized CNIs Flannel,
Calico, Cilium.

In GitHub

27/10/2025

Sprint 2:
Environmental Setup

Installed Docker
Desktop on Windows.
Set up Kind and
Minikube clusters with
Kubernetes v1.30.
Installed iperf3, ping,
and wrk2.

Verified pod
connectivity.

In GitHub

29/10/2025

Sprint 3: Flannel
Benchmarking

Deployed Flannel
(v0.25). Ran iperf3 and
ping tests (20-100
pods).

Observed higher
latency beyond 80
pods

In GitHub

31/10/2025

Sprint 4: calico
Benchmarking

Installed Calico
(v3.28). Tested IPIP
and eBPF modes.
Recorded stable jitter
and balanced
performance.

In GitHub

Date Activity Description Output / Repository
Deployed Cilium
(v1.16) with eBPF
. s datapath. Measured
02/11/2025 Sprint 5 - Gilium latency (-1.1ms)and | In GitHub
Benchmarking
throughput.
Slightly higher CPU
usage.
Combined all results
into one dataset.
Sprint 6 — Data Created latency and
04/11/2025 Validation & throughput graphs In GitHub
Visualization using Excel and
Grafana.
Finalized AIORI-2
report and blog.
Sprint 7 - Reviewed by Dr.
06/11/2025 Documentation & Aditya Ghosh. In GitHub
Reporting Submitted report and
GitHub repo to AIORI.

e Results and Findings

This section summarizes key technical insights, interoperability challenges, and performance
outcomes observed during testing.

o Performance Summary

Metric Flannel (v0.25) Calico (v3.28) Cilium (v1.16)
Average Latency 28 16 11
(ms)

Average Throughput 8.4 92 95
(Gbps) ’ ' ’
Jitter (ms) 0.5 0.3 0.2
CPU Usage (%) 22 25 31
Maximum Pod

Scalability 150 200 180

o Observations:

= Cilium delivered the lowest latency and highest throughput owing to its eBPF
datapath.

» Calico provided balanced performance with predictable scaling and stable jitter.

» Flannel showed higher latency due to VXLAN encapsulation but remained simplest
to configure.

o Technical Insights

= eBPF-based networking (Cilium)
minimizing kernel-user transitions.

» Calico’s routing model was more stable under high-pod density, though slightly
heavier on CPU.

= Overlay encapsulation in Flannel caused additional latency as pod counts increased.

= All CNIs followed similar scaling trends up to ~150 pods, after which throughput
degradation was observed.

« UDP traffic produced greater jitter variation than TCP due to absence of
retransmission control.

improved packet-processing efficiency by

o Interoperability Challenges

» Achieving consistent pod-to-pod communication across Kind and Minikube clusters
required identical CNI MTU settings.

= Cilium required enabling kernel BPF features in Docker Desktop, which increased
CPU usage during load tests.

= Calico policy enforcement initially blocked egress traffic until corrected via network-
policy rules.

» Flannel's overlay mode needed manual routing adjustments in Windows Docker
networks.

o Performance Outcomes

» Validated the draft-ietf-bmwg-containerized-infra methodology on local Kubernetes
clusters.
» Generated reproducible datasets and visual graphs for latency, throughput, and
jitter.
» |dentified practical recommendations:
e Use Cilium for latency-sensitive workloads.
e Use Calico for balanced scalability.
» Use Flannel for lightweight, small-scale deployments Contributed benchmarking
scripts and data to the AIORI GitHub repository..

Open Source Contributions

o Contribution Summary

Date Repository Contribution Type Description Status
AIORI-Bench ‘ Added Python scripts for
28/10/2025 A e Code Commit automated CNI benchmarking Submitted
cripts using iperf3 and ping in
Kind/Minikube.
N v Uploaded YAML manifests for
AIORI-Benchma rk- - Flannel, Calico, and Cilium :
30/10/2025 - Config Fil ’) Submitted
ey Configs ontig Fites deployments; included test pod ubmitte
templates.
Created README with setup
AIORI-Docs : d dencies, and test
04/11/2025 . D tat steps, dependencies, Completed
/11/ Repository ocumentation procedure following BMWG omprete
draft.
06/11/2025 AIORI—Main Pull Request Merged validat.ed scripts and Awaiting Final
Repository datasets into repo Approval
Authored a blog summarizing
06/11/2025 AIORI-Blog (Dev Diary | Technical Blog Draft methoggrlff’iggyu’rﬁgrl]ts’ and Drafted
recommendations.

o Highlights of Contributions

Automated Benchmarking Scripts: Bash and Python utilities for repeatable latency
and throughput tests.

Configuration Files: Ready-to-use YAML manifests for Kubernetes CNIs (Flannel,
Calico, Cilium).

Performance Datasets: CSV results aligned with draft-ietf-bmwg-containerized-
infra standards.

Documentation: Markdown guides and README files detailing environment setup
and reproducibility.

Technical Blog: “Benchmarking Kubernetes CNIs: Insights from AIORI BMN-07"

e Collaboration with IETF WGs
o Alignment with IETF Drafts and Standards

Implemented benchmarking methods described in draft-ietf-bmwg-containerized-
infra, focusing on latency, throughput, jitter, and scalability.

Adopted performance definitions consistent with RFC 2544 for baseline throughput
and latency validation.

Followed BMWG's measurement framework for repeatable, reproducible tests across
Kubernetes CNIs (Flannel, Calico, and Cilium).

Structured dataset and test parameters in line with draft-defined benchmarking
metadata (e.g., test ID, duration, metric type).

o Collaboration Activities

Engaged with AIORI's BMWG coordination team to ensure methodology
compliance.

Shared test configuration details and preliminary findings with Dr. Aditya Ghosh
(AIORI Mentor) for technical validation.

Discussed metric definitions and scalability modeling with AIORI contributors
referencing BMWG guidance.

Followed BMWG's draft update discussions for metric naming consistency and
validation approach.

Prepared benchmarking summary for potential submission to the BMWG mailing
list through AIORI channels.

o Outcomes of Collaboration

Demonstrated a practical implementation of BMWG's container benchmarking
methodology on real Kubernetes CNis.

Produced a validated dataset of latency, throughput, and scalability measurements
suitable for BMWG use cases.

Enhanced AIORI's repository with reproducible scripts and documentation for
community validation.

Supported |IETF's standardization goals by providing real-world benchmarking
insights from an academic setup.

Set the foundation for future BMWG-aligned studies (e.g., benchmarking service
meshes or multi-cluster networking).

e Impact and Future Work

o Impact

Validated draft-ietf-bmwg-containerized-infra on Kubernetes CNIs using Kind,
Minikube, and Docker.

Generated reproducible datasets for latency, throughput, jitter, and scalability.
Provided configuration insights to improve Kubernetes network performance.
Strengthened collaboration between AIORI and IETF BMWG through practical
benchmarking results.

Enhanced AIORI's open-source benchmarking toolkit with scripts and
documentation.

o Future Work

» Extend benchmarking to multi-cluster and service mesh environments.

» Include additional CNIis like Weave Net and Kube-Router for broader comyparison.
= Automate metric collection using Prometheus-Grafana APIs for real-time analysis.
» Share results and feedback with BMWG via AIORI for draft updates and validation.

AIORI-2 Technical Blog Series & Dev Diaries
e Lead Paragraph

Container networking is at the core of cloud-native performance. In this project, we
benchmarked Kubernetes Container Network Interfaces (CNIs) Flannel, Calico, and Cilium
using the methodology proposed in the I|ETF draft Benchmarking Methodology for
Containerized Infrastructure (draft-ietf-omwg-containerized-infra). The goal was to measure
latency, throughput, jitter, and scalability in controlled Kubernetes environments and derive
configuration insights for academic and research cloud setups.

e Background and Motivation

Kubernetes CNIs manage how pods communicate within and across clusters. As
deployments scale, the efficiency of the CNI impacts overall application performance. However,
there is limited standardized benchmarking guidance for containerized infrastructures. The
I[ETF BMWG draft offers a common framework to test and compare such environments. This
project aimed to implement and validate those benchmarking methods using real tools
bridging academic testing with IETF standardization.

e Technical Implementation

1.Setup and Tools
Host Environment: Windows 11 (Docker Desktop)
Cluster Platforms: Kind (Kubernetes-in-Docker) and Minikube
Kubernetes Version: v1.30
Container Runtime: containerd
Benchmarking Tools:
» iperf3 —for throughput and jitter measurements
» ping - for latency measurements
» wrk2 —for HTTP load testing

2. Implementation Steps

O 0 0 o o

o Prepared Environment:
= |[nstalled Docker Desktop and configured Kind and Minikube clusters with uniform
CPU and memory resources.
o Deployed CNIs Sequentially:
= |nstalled and tested each CNI (Flannel, Calico, Cilium) in isolated clusters to ensure
fair comparison.
o Generated Workloads:
= Created test pods and services under varying pod densities (20, 50, 100, and 150).
o Executed Benchmarks:
= Ran iperf3 and wrk2 tests between client-server pods for both TCP and UDP traffic;
collected latency, throughput, and jitter data.
o Collected and Analyzed Metrics:
= Exported logs, converted them into CSV format, and plotted latency-vs-pod and
throughput-vs-load graphs using Excel/Grafana.
o Validated Results:
= Cross-checked metrics against draft-ietf-bmwg-containerized-infra definitions to
ensure standard compliance.

3.Challenges Faced

o Networking Consistency:
= Achieving identical MTU and routing configurations across Kind and Minikube
clusters was challenging, as minor differences impacted latency readings.
o Resource Limitations:
= CPU contention during heavy workloads on Docker Desktop caused slight
performance variations.
o Cilium BPF Settings:
= eBPF-based networking required enabling Linux kernel features within Docker,
which increased CPU usage.
o Test Repeatability:
= Maintaining consistent test conditions (container restart timings and pod densities)
demanded strict scripting automation.

¢ Results and Observations

The benchmarking experiments followed the procedures in draft-ietf-bmwg-containerized-
infra

to evaluate latency, throughput, jitter, and scalability for Flannel, Calico, and Cilium CNlIs.
All tests were performed on identical Kubernetes clusters built using Kind and Minikube with
Docker Desktop on Windows

o Key Metrics and Results

Test Metric Observation Note
Higher latency due to
Flannel Latency 2.8 ms average VXLAN encapsulation
overhead
Performance drops
Throughput 8.4 Gbps
gnp P beyond 100 pods
. Minor variation under
Jitter 0.5ms UDP load
Calico Latency 1.6 ms average Stable and consistent
performance
Balanced throughput
Throughput 9.2 Gbps with moderate CPU
load
. Minimal jitter across
Jitter 0.3ms 20-200 pods
T Lowest latency dueto
Cilium Latency 1.1 ms average eBPF datapath
Highest throughput
Throughput 9.5 Gbps
gnp P recorded among CNls
CPU Slight increase from
Usage 31 % peak eBPF kernel
processing
- 200 (Calico), 180 Linear performance up
Scalabilit e ’
y Max Pods (Cilium), to 150 pods;
150 (Flannel) degradation afterward

Powershell Script:

$CNI_LIST = @("flannel", "calico", "cilium") function Run-Benchmark($CNI) {

$timestamp = Get-Date -Format "yyyyMMdd-HHmm"

$outdir = "results\$timestamp-$CNI"

New-Item -ltemType Directory -Force -Path $outdir | Out-Null Write-Host "™ n[+] Starting benchmark for:
$CNI"

#1. Clean Docker memory

Write-Host "[*] Cleaning up Docker memory..." docker system prune -af | Out-Null

2. Reset Minikube
Write-Host "[*] Starting new Minikube cluster with $CNI.." minikube delete --all | Out-Null
Start-Sleep -Seconds 10

3. Start cluster with chosen CNI if ($CNI -eq "flannel") {
minikube start --driver=docker --cni=flannel
$profileYaml = "../orofiles/flannel-vxlanyaml"
}

elseif ($CNI -eq "calico") {

minikube start --driver=docker --cni=calico
$profileYaml = "../orofiles/calico-bgpyaml"

}

elseif ($CNI -eq "cilium") {

minikube start --driver=docker --cni=cilium
$profileyaml =".. /profiles/cilium-ebpfyam!"

}

else {

Write-Host "[] Invalid CNI: $CNI" return

}

4. Apply tuned profile for this CNI if (Test-Path $profileYaml) {

Write-Host "[*] Applying tuned CNI profile: $profileYaml!" minikube kubectl -- apply -f $profileYaml! | Out-
Null

}

else {

Write-Host "[!] Warning: Profile YAML not found for $CNI ($profileYaml)"

}

5. Enable metrics server
Write-Host "[*] Enabling metrics-server.." minikube addons enable metrics-server | Out-Null
minikube kubectl -- rollout status deployment/metrics-server -n kube-system --timeout=120s | Out-Null

6. Wait for all kube-system pods to be ready
Write-Host "[*] Waiting for kube-system and CNI pods..."
minikube kubectl -- wait --for=condition=Ready pods --all -n kube-system --timeout=5m | Out-Null

7. Deploy iperf3 pods

Write-Host "[*] Deploying iperf pods..."

minikube kubectl -- run iperf-server --image=cagedata/iperf3 --restart=Never --command -- iperf3 -s -p
5201 | Out-Null

minikube kubectl -- run iperf-client --image=cagedata/iperf3 --restart=Never --command -- sleep 3600 |
Out-Null

Wait for pods

minikube kubectl -- wait --for=condition=Ready pod/iperf-server --timeout=3m | Out-Null minikube
kubectl -- wait --for=condition=Ready pod/iperf-client --timeout=3m | Out-Null

8. Run iperf3 test

$server_ip = minikube kubectl! -- get pod iperf-server -o jsonpath='{.status.podIP}' Write-Host "[*] Running
iperf3 test from client to server ($server_ip)..."

$iperfOutput = minikube kubectl -- exec iperf-client -- iperf3 -c $server_ip -p 5201 -J 2>$null if
($iperfOutput) {

$iperfOutput | Out-File -FilePath "$outdiniperf3_${CNI}json" -Encoding utf8 Write-Host "[OK] iperf3
results saved to $outdiniperf3_${CNI}.json"

}

else {

Write-Host "[!] No output received from iperf3, test might have failed."

}

9. Collect system metrics

Write-Host "[*] Collecting resource usage..."

minikube kubectl -- top pods -n kube-system --no-headers | Out-File "$outdir\${CNI}_sys_usage.txt"
2>$null

#10. Cleanup

Write-Host "[*] Cleaning up Minikube.." minikube delete | Out-Null

Start-Sleep -Seconds 15

Write-Host "[OK] Benchmark for $CNI complete. Results saved to $outdir"

foreach ($cniin $CNI_LIST) { try {
Run-Benchmark -CNI $cni

} catch {

Write-Host "['] Benchmark for $cni failed: $_"
}

Write-Host "™ n[*] Cooling down before next test..." Start-Sleep -Seconds 60

}

Write-Host " n[Done] All CNI benchmarks completed. Results stored in 'results/

Throughput over time (Gbps) per CNI — mean + std

100
— —
—_—
a0

B0

Thraughput (GBps)

60 1

— calico [mean)
40 4 — flannel imean)
= cilium (mean}

0 2 4 L] 8
Interval index

Bandwidth test between all the CNI

e Lessons Learned
o Key Learnings

» Following precise IETF benchmarking procedures is essential — adhering to

» draft-ietf-bmwg-containerized-infra ensures accurate, reproducible measurements.

» Coordinating multiple open-source tools (Docker, Kind, Minikube, iperf3, wrk2, and
GCrafana) required consistent configuration parameters for fair comparison.

» Understanding network behavior deeply matters — kernel-level differences in eBPF
(Cilium) and overlay tunneling (Flannel) strongly affect latency and jitter results.

» Automation improved consistency — scripting benchmark runs and metric
collection reduced manual errors and timing mismatches.

» Cross-tool validation mirrored real IETF workflows — the process of data verification,
review, and mentor feedback resembled collaborative review within working groups.

» Visualization clarified performance trade-offs — plotting latency and throughput
graphs helped link numeric data to architectural patterns.

e Open Source and Community Contributions

Project . .
) . / Contribution Status Link
Repository

Automated Python and

Bash scripts for
AIC).RI-Benchmark- benchmarking Submtted / Under [GitHUb Link]
Scripts Kubernetes CNIs Review

(Flannel, Calico, Cilium)
using Kind & Minikube

CSV datasets
containing latency,
throughput, jitter, and Submitted [GitHub Link]
scalability metrics
collected during tests

AIORI-Benchmark-
Data

e Future Work

Extend benchmarking to multi-node and muilti-cluster Kubernetes environments.
Include additional CNIs such as Weave Net and Kube-Router for broader comparison.
Automate real-time metric collection using Prometheus and Grafana APls.

Integrate service mesh benchmarking (e.g., Istio, Linkerd) with existing test setup.
Share refined datasets and findings with IETF BMWG for future draft validation.

o O 0O o o

AIORI-2: Reporting and Standards Mapping

Team Name Institution Project Title Focus Area
. o Benchmarking Other -
Christ Universit i
. Y Kubernetes CNIs Benchmarklng
L8BNCY Kengeri using BMWG Methodologies for
Campus,Bengaluru Network Systems
Methodology (BMN)
Date: 06/11/2025
o Standards Reference
RFC / Draft No. Title / Area Lifecycle Stage How This Work Relates
Benchmarking Implements and validates
draft-ietf-bmwg-cont Metho.dolc?gy for . benchmarking procedures for
. ized-infra Containerized Internet-Draft containerized enwro_nments
ainerize Infrastructure Sections 3 & 5 (Metrics and
(BMWG) Methodology).

Benchmarking
Methodology for
Network Interconnect e
Devices (BMWG) definitions.

Used as a reference for throughput,

RFC 2544 Internet Standard latency, and test repeatability

o Impact on Standards Development

Question

Response with Explanation

Does this work support, extend,
or validate an existing RFC?

Yes it validates performance benchmarking methodologies
from draft-ietf-bmwg-containerized-infra and partially aligns
with the measurement procedures in RFC 2544.

Could it influence a new
Internet-Draft or update
sections of an RFC?

Potentially yes results provide empirical data supporting
the applicability of BMWG benchmarking principles in
Kubernetes-based cloud infrastructures.

Any feedback or data shared
with IETF WG mailing lists (e.g.,
DNSOP, SIDROPS, DPRIVE,
QuIC)?

Not yet planned for submission to the BMWG mailing list
through AIORI coordination after mentor validation.

Planned next step (e.g., share
measurement dataset / open PR
/ draft text).

Share validated benchmarking dataset and methodology
summary with AIORI for forwarding to BMWG. Prepare a
short technical note for inclusion in future draft revisions.

+ References

o draft-ietf-bmwg-containerized-infra — Benchmarking Methodology for Containerized
Infrastructure, IETF Benchmarking Methodology Working Group (BMWG).
o RFC 2544 - Benchmarking Methodology for Network Interconnect Devices, IETF, March

1999.

0O O o o o o

e About the Authors

AIORI Testbed Documentation: https://aiori.in/testbed

IETF BMWG Working Group: https:/datatracker.ietf.org/wg/bmwg/
Kubernetes Documentation: https:/kubernetes.io/docs/

Cilium Documentation: https://docs.cilium.io/

Calico Documentation: https:/docs.tigera.io/calico

Flannel Project Repository: https:/github.com/flannel-io/flannel

LBNCY represents Christ University, Kengeri Campus,Bengaluru as part of the AIORI-2
Hackathon (Nov 2025). The team, consisting of Ritesh and Joel, focuses on the practical
implementation of IETF benchmarking standards and open-source contributions in cloud-
native network performance and containerized infrastructure benchmarking. Their work
bridges academic research with Internet performance standardization under the guidance of
Aditya Ghosh, AIORI Technical Mentor.

https://aiori.in/testbed
https://datatracker.ietf.org/wg/bmwg/
https://kubernetes.io/docs/
https://docs.cilium.io/
https://docs.tigera.io/calico
https://github.com/flannel-io/flannel

e Reflections from the Team
o Ritesh (Team Lead): “Implementing BMWG benchmarking in Kubernetes showed how
CNI configurations directly influence network performance and scalability.”

o Joel (Developer): “This project improved my understanding of automation, network
tuning, and collaborative benchmarking workflows.”

o Acknowledgments

We thank the participating institutions, mentors, contributors, and organizations that
supported the sprint series.

Special thanks to Aditya Ghosh, AIORI Technical Mentor, for his guidance and continuous
feedback throughout the benchmarking project. We also extend our gratitude to the AIORI
coordination team for providing the platform, resources, and technical framework aligned with
draft-ietf-bomwg-containerized-infra. Finally, we acknowledge Christ University, Kengeri

Campus, for academic support and encouragement during the implementation of BMN-07:
Kubernetes CNI Benchmarking.

