
Kubernetes CNI Benchmarking

Introduction

Executive Summary

Sprint Methodology

Activities and Implementation

Results and Findings

Collaboration with IETF WGs

Technical Implementation 09
Results and Observations

Standards Reference

Impact on Standards Development

Introduction

02
02
02

RFC-Open Source Contribution
Report

03
05
06

Technical Blog Series & Dev
Diaries

08

11

Reporting and Standards
Mapping

13
14

About the Authors

Acknowledgement & References

Conclusion

14
15

Blog link

TABLE OF CONTENTS

Team Name:

Members:

Problem Statement:

Pamuru Ritesh Reddy(Student)

Joel Tito (Student)

Rakoth Kandan Sambandam(Professor)

L8NCY

Objrctives

Name Designation Institution

Pamuru Ritesh Reddy Student Christ University , Bengaluru

Joel Tito Student Christ University , Bengaluru

Rakoth Kandan Sambandam Professor Christ University , Bengaluru

Theme: Implementation and Testing of Selected Internet-Drafts / RFCs usingAIORI
Testbed
Focus Areas: Cloud Infrastructure Benchmarking (Container Networking)
Organized by: Advanced Internet Operations Research in India (AIORI)
Collaborating Institutions: Christ University , Bengaluru
Date:11/2025
Prepared by:

Introduction

Contact: pamuru.ritesh@btech.christuniversity.in , riteshpamuru@gmail.com 9866446161

 This project presents a benchmarking study of Kubernetes Container Network Interfaces
(CNIs) Flannel, Calico, and Cilium conducted within the AIORI institutional cloud environment.
Using the methodology outlined in draft-ietf-bmwg-containerized-infra by the IETF
Benchmarking Methodology Working Group (BMWG), the study measured key network
performance parameters including latency, throughput, jitter, and scalability under varying
pod densities and traffic loads. Identical Kubernetes clusters were configured for each CNI to
ensure fair and reproducible comparison. The benchmarking results revealed that Cilium,
leveraging its eBPF-based data path, achieved the lowest latency and highest throughput;
Calico demonstrated balanced performance and stability; while Flannel, though easy to
configure, showed higher latency due to encapsulation overhead. These findings validate the
BMWG benchmarking approach and provide actionable configuration recommendations for
optimizing container networking in academic and research cloud environments.

Executive Summary

Overview

 This project benchmarks Kubernetes CNIs—Flannel, Calico, and Cilium—within the AIORI
cloud, adhering to the IETF BMWG methodology (draft-ietf-bmwg-containerized-infra).
 Results indicate Cilium achieves superior throughput and latency via eBPF, outperforming
Calico and Flannel. These findings validate the benchmarking framework and offer actionable
configuration recommendations for optimizing container networking in research
environments.

mailto:pamuru.ritesh@btech.christuniversity.in
mailto:riteshpamuru@gmail.com

Focus Area Relevant RFCs /
Drafts

Open Source
Reference

AIORI Module Used

Kubernetes CNI
Benchmarking

draft-ietf-bmwg-cont
ainerized-infra —
Benchmarking
Methodology for
Containerized
Infrastructure

Kubernetes v1.30,
Flannel v0.25, Calico
v3.28, Cilium v1.16

AIORI Cloud
Benchmarking
Testbed

Cloud-Native
Network Performance

draft-ietf-bmwg-cont
ainerized-infra, RFC
2544
(Benchmarking
Methodology for
Network
Interconnect
Devices)

Prometheus, Grafana,
iperf3, wrk2

AIORI Cloud
Benchmarking
Testbed

Objectives
Implement the benchmarking methodology from draft-ietf-bmwg-containerized-infra
on Kubernetes CNIs like Flannel, Calico, and Cilium.
Measure latency, throughput, jitter, and scalability under varying pod densities and
traffic loads.
Compare performance across CNIs to identify strengths and limitations.
Detects bottlenecks impacting containerized network performance.
Automate the benchmarking process using AIORI Cloud Testbed scripts.
Provide configuration recommendations for academic and research cloud operators.
Contribute benchmarking results and datasets to AIORI’s open-source repository.

Scope and Focus Areas

Sprint Methodology
 The sprints followed a structured workflow consisting of selection, implementation, testing,
and contribution phases using AIORI testbed infrastructure and open-source tools.

a. Workflow:

1.RFC / Draft Selection

i.Selected draft-ietf-bmwg-containerized-infra from the IETF Benchmarking
Methodology Working Group (BMWG) as the core reference document.

ii.Defined performance metrics latency, throughput, jitter, and scalability as described
in Section 5 of the draft.

iii. Identified Kubernetes Container Network Interfaces (CNIs) Flannel, Calico, and
Cilium as benchmarking targets.

iv.Chosen due to their distinct datapath architectures (VXLAN, routing, eBPF),
providing diverse test scenarios for validation.

b. Sprint Preparation:

1. Installed Docker Desktop on Windows and enabled the Kubernetes environment.
2.Set up Minikube and Kind (Kubernetes-in-Docker) to create isolated local clusters

for each CNI test.
3.Configured Kubernetes (v1.30) using containerd runtime and verified cluster node

health (kubectl get nodes).
4. Installed performance tools:

i. iperf3 → for throughput and latency testing
ii.ping → for basic connectivity verification

iii.wrk2 → for HTTP/UDP stress

c. testing Implementation Phase:
1.Deployed separate clusters in Kind for each CNI Flannel, Calico, and Cilium ensuring

clean network namespaces for fair comparison.
2.Configured networking add-ons manually within Minikube to simulate real

Kubernetes networking conditions.
3.Created and executed YAML manifests for test pods under varying pod densities

(20, 50, 100).
4.Used iperf3 between client–server pods to measure throughput and jitter under

both TCP and UDP traffic.
5.Used ping to record RTT latency and packet loss under sustained traffic.
6.Logged metrics and exported container statistics (docker stats) for CPU and

memory usage monitoring.

d. Interoperability Testing:
1.Verified pod-to-pod and cross-node communication for all CNIs under Docker and

Kind setups.
2.Observed encapsulation behavior in Flannel (VXLAN) and BPF map interactions in

Cilium.
3.Checked compatibility of CNIs with Windows-based Docker hosts to ensure

consistent behavior with Linux-based documentation.
4.Performed network path tracing (traceroute and kubectl exec) to validate

connectivity layers.
5.Compared network plugin interoperability with Kubernetes DNS, service routing,

and load-balancing modules.

e. Documentation & Contribution:
1.Recorded all test configurations, Docker/Minikube commands, and metrics

collection steps.
2.Captured screenshots of test results (iperf3 outputs, latency graphs, and pod

communication).
3.Documented the complete benchmarking workflow in Markdown and summarized

results in tabular form.
4.Prepared visual comparisons using Excel and Grafana dashboards (where possible).
5.Uploaded configuration files, scripts, and documentation to a GitHub repository for

transparency and reproducibility.

f. Post-Sprint Reporting:
1.Consolidated all results into the AIORI-2 Hackathon Report Template.
2.Cross-referenced findings with draft-ietf-bmwg-containerized-infra to ensure

standard alignment.
3.Created comparative charts showing latency, throughput, and scalability for each

CNI.
4.Reviewed report content with Dr. Aditya Ghosh (AIORI Mentor) for validation.
5.Submitted the final report and repository link to AIORI for review and inclusion in

benchmarking archives.

Date Activity Description Output / Repository

25/10/2025
Sprint 1: RFC
selection and
planning

Selected
draft-ietf-bmwg-cont
ainerized-infra.
Defined metrics
(latency, throughput,
jitter, scalability) and
finalized CNIs Flannel,
Calico, Cilium.

In GitHub

27/10/2025
Sprint 2:
Environmental Setup

Installed Docker
Desktop on Windows.
Set up Kind and
Minikube clusters with
Kubernetes v1.30.
Installed iperf3, ping,
and wrk2.
Verified pod
connectivity.

In GitHub

29/10/2025
Sprint 3: Flannel
Benchmarking

Deployed Flannel
(v0.25). Ran iperf3 and
ping tests (20–100
pods).
Observed higher
latency beyond 80
pods

In GitHub

31/10/2025
Sprint 4: calico
Benchmarking

Installed Calico
(v3.28). Tested IPIP
and eBPF modes.
Recorded stable jitter
and balanced
performance.

In GitHub

Activities and Implementation

Date Activity Description Output / Repository

02/11/2025
Sprint 5 – Cilium
Benchmarking

Deployed Cilium
(v1.16) with eBPF
datapath. Measured
latency (~1.1 ms) and
throughput.
Slightly higher CPU
usage.

In GitHub

04/11/2025
Sprint 6 – Data
Validation &
Visualization

Combined all results
into one dataset.
Created latency and
throughput graphs
using Excel and
Grafana.

In GitHub

06/11/2025
Sprint 7 –
Documentation &
Reporting

Finalized AIORI-2
report and blog.
Reviewed by Dr.
Aditya Ghosh.
Submitted report and
GitHub repo to AIORI.

In GitHub

Results and Findings
 This section summarizes key technical insights, interoperability challenges, and performance
outcomes observed during testing.

Performance Summary

Metric Flannel (v0.25) Calico (v3.28) Cilium (v1.16)

Average Latency
(ms)

2.8 1.6 1.1

Average Throughput
(Gbps)

8.4 9.2 9.5

Jitter (ms) 0.5 0.3 0.2

CPU Usage (%) 22 25 31

Maximum Pod
Scalability

150 200 180

Date Repository Contribution Type Description Status

28/10/2025
AIORI-Benchma rk-

Scripts Code Commit

Added Python scripts for
automated CNI benchmarking

using iperf3 and ping in
Kind/Minikube.

Submitted

30/10/2025
AIORI-Benchma rk-

Configs Config Files

Uploaded YAML manifests for
Flannel, Calico, and Cilium

deployments; included test pod
templates.

Submitted

04/11/2025
AIORI-Docs
Repository Documentati on

Created README with setup
steps, dependencies, and test

procedure following BMWG
draft.

Completed

06/11/2025 AIORI-Main
Repository

Pull Request Merged validated scripts and
datasets into repo

Awaiting Final
Approval

06/11/2025 AIORI-Blog (Dev Diary Technical Blog Draft

Authored a blog summarizing
methodology, results, and

configuration
recommendations.

Drafted

Observations:
Cilium delivered the lowest latency and highest throughput owing to its eBPF
datapath.
Calico provided balanced performance with predictable scaling and stable jitter.
Flannel showed higher latency due to VXLAN encapsulation but remained simplest
to configure.

Technical Insights
eBPF-based networking (Cilium) improved packet-processing efficiency by
minimizing kernel–user transitions.
Calico’s routing model was more stable under high-pod density, though slightly
heavier on CPU.
Overlay encapsulation in Flannel caused additional latency as pod counts increased.
All CNIs followed similar scaling trends up to ~150 pods, after which throughput
degradation was observed.
UDP traffic produced greater jitter variation than TCP due to absence of
retransmission control.

Interoperability Challenges
Achieving consistent pod-to-pod communication across Kind and Minikube clusters
required identical CNI MTU settings.
Cilium required enabling kernel BPF features in Docker Desktop, which increased
CPU usage during load tests.
Calico policy enforcement initially blocked egress traffic until corrected via network-
policy rules.
Flannel’s overlay mode needed manual routing adjustments in Windows Docker
networks.

Performance Outcomes

Validated the draft-ietf-bmwg-containerized-infra methodology on local Kubernetes
clusters.
Generated reproducible datasets and visual graphs for latency, throughput, and
jitter.
Identified practical recommendations:

Use Cilium for latency-sensitive workloads.
Use Calico for balanced scalability.
Use Flannel for lightweight, small-scale deployments Contributed benchmarking
scripts and data to the AIORI GitHub repository..

Open Source Contributions
Contribution Summary

Highlights of Contributions
Automated Benchmarking Scripts: Bash and Python utilities for repeatable latency
and throughput tests.
Configuration Files: Ready-to-use YAML manifests for Kubernetes CNIs (Flannel,
Calico, Cilium).
Performance Datasets: CSV results aligned with draft-ietf-bmwg-containerized-
infra standards.
Documentation: Markdown guides and README files detailing environment setup
and reproducibility.
Technical Blog: “Benchmarking Kubernetes CNIs: Insights from AIORI BMN-07”

Collaboration with IETF WGs
Alignment with IETF Drafts and Standards

Implemented benchmarking methods described in draft-ietf-bmwg-containerized-
infra, focusing on latency, throughput, jitter, and scalability.
Adopted performance definitions consistent with RFC 2544 for baseline throughput
and latency validation.
Followed BMWG’s measurement framework for repeatable, reproducible tests across
Kubernetes CNIs (Flannel, Calico, and Cilium).
Structured dataset and test parameters in line with draft-defined benchmarking
metadata (e.g., test ID, duration, metric type).

Collaboration Activities
Engaged with AIORI’s BMWG coordination team to ensure methodology
compliance.
Shared test configuration details and preliminary findings with Dr. Aditya Ghosh
(AIORI Mentor) for technical validation.
Discussed metric definitions and scalability modeling with AIORI contributors
referencing BMWG guidance.
Followed BMWG’s draft update discussions for metric naming consistency and
validation approach.
Prepared benchmarking summary for potential submission to the BMWG mailing
list through AIORI channels.

Outcomes of Collaboration
Demonstrated a practical implementation of BMWG’s container benchmarking
methodology on real Kubernetes CNIs.
Produced a validated dataset of latency, throughput, and scalability measurements
suitable for BMWG use cases.
Enhanced AIORI’s repository with reproducible scripts and documentation for
community validation.
Supported IETF’s standardization goals by providing real-world benchmarking
insights from an academic setup.
Set the foundation for future BMWG-aligned studies (e.g., benchmarking service
meshes or multi-cluster networking).

Impact and Future Work
Impact

Validated draft-ietf-bmwg-containerized-infra on Kubernetes CNIs using Kind,
Minikube, and Docker.
Generated reproducible datasets for latency, throughput, jitter, and scalability.
Provided configuration insights to improve Kubernetes network performance.
Strengthened collaboration between AIORI and IETF BMWG through practical
benchmarking results.
Enhanced AIORI’s open-source benchmarking toolkit with scripts and
documentation.

Future Work

Extend benchmarking to multi-cluster and service mesh environments.
Include additional CNIs like Weave Net and Kube-Router for broader comparison.
Automate metric collection using Prometheus–Grafana APIs for real-time analysis.
Share results and feedback with BMWG via AIORI for draft updates and validation.

AIORI-2 Technical Blog Series & Dev Diaries
Lead Paragraph

 Container networking is at the core of cloud-native performance. In this project, we
benchmarked Kubernetes Container Network Interfaces (CNIs) Flannel, Calico, and Cilium
using the methodology proposed in the IETF draft Benchmarking Methodology for
Containerized Infrastructure (draft-ietf-bmwg-containerized-infra). The goal was to measure
latency, throughput, jitter, and scalability in controlled Kubernetes environments and derive
configuration insights for academic and research cloud setups.

Background and Motivation
 Kubernetes CNIs manage how pods communicate within and across clusters. As
deployments scale, the efficiency of the CNI impacts overall application performance. However,
there is limited standardized benchmarking guidance for containerized infrastructures. The
IETF BMWG draft offers a common framework to test and compare such environments. This
project aimed to implement and validate those benchmarking methods using real tools
bridging academic testing with IETF standardization.

Technical Implementation
1.Setup and Tools

Host Environment: Windows 11 (Docker Desktop)
Cluster Platforms: Kind (Kubernetes-in-Docker) and Minikube
Kubernetes Version: v1.30
Container Runtime: containerd
Benchmarking Tools:

iperf3 – for throughput and jitter measurements
ping – for latency measurements
wrk2 – for HTTP load testing

 2. Implementation Steps
Prepared Environment:

Installed Docker Desktop and configured Kind and Minikube clusters with uniform
CPU and memory resources.

Deployed CNIs Sequentially:
Installed and tested each CNI (Flannel, Calico, Cilium) in isolated clusters to ensure
fair comparison.

Generated Workloads:
Created test pods and services under varying pod densities (20, 50, 100, and 150).

Executed Benchmarks:
Ran iperf3 and wrk2 tests between client-server pods for both TCP and UDP traffic;
collected latency, throughput, and jitter data.

Collected and Analyzed Metrics:
Exported logs, converted them into CSV format, and plotted latency-vs-pod and
throughput-vs-load graphs using Excel/Grafana.

Validated Results:
Cross-checked metrics against draft-ietf-bmwg-containerized-infra definitions to
ensure standard compliance.

 3.Challenges Faced
Networking Consistency:

Achieving identical MTU and routing configurations across Kind and Minikube
clusters was challenging, as minor differences impacted latency readings.

Resource Limitations:
CPU contention during heavy workloads on Docker Desktop caused slight
performance variations.

Cilium BPF Settings:
eBPF-based networking required enabling Linux kernel features within Docker,
which increased CPU usage.

Test Repeatability:
Maintaining consistent test conditions (container restart timings and pod densities)
demanded strict scripting automation.

Results and Observations
 The benchmarking experiments followed the procedures in draft-ietf-bmwg-containerized-
infra
 to evaluate latency, throughput, jitter, and scalability for Flannel, Calico, and Cilium CNIs.
All tests were performed on identical Kubernetes clusters built using Kind and Minikube with
Docker Desktop on Windows

Key Metrics and Results

Test Metric Observation Note

Flannel Latency 2.8 ms average
Higher latency due to
VXLAN encapsulation
overhead

Throughput 8.4 Gbps
Performance drops
beyond 100 pods

Jitter 0.5 ms
Minor variation under
UDP load

Calico Latency 1.6 ms average
Stable and consistent
performance

Throughput 9.2 Gbps
Balanced throughput
with moderate CPU
load

Jitter 0.3 ms
Minimal jitter across
20–200 pods

Cilium Latency 1.1 ms average Lowest latency due to
eBPF datapath

Throughput 9.5 Gbps
Highest throughput
recorded among CNIs

CPU
Usage 31 % peak

Slight increase from
eBPF kernel
processing

Scalability
Max Pods

200 (Calico), 180
(Cilium),
150 (Flannel)

Linear performance up
to 150 pods;
degradation afterward

Powershell Script:
==
L8NCY - Kubernetes CNI Benchmarking Automation Framework
==
$CNI_LIST = @("flannel", "calico", "cilium") function Run-Benchmark($CNI) {
$timestamp = Get-Date -Format "yyyyMMdd-HHmm"
$outdir = "results\$timestamp-$CNI"
New-Item -ItemType Directory -Force -Path $outdir | Out-Null Write-Host "`n[+] Starting benchmark for:
$CNI"
1. Clean Docker memory
Write-Host "[*] Cleaning up Docker memory..." docker system prune -af | Out-Null

2. Reset Minikube
Write-Host "[*] Starting new Minikube cluster with $CNI..." minikube delete --all | Out-Null
Start-Sleep -Seconds 10

3. Start cluster with chosen CNI if ($CNI -eq "flannel") {
minikube start --driver=docker --cni=flannel
$profileYaml = ".. /profiles/flannel-vxlan.yaml"
}
elseif ($CNI -eq "calico") {
minikube start --driver=docker --cni=calico
$profileYaml = ".. /profiles/calico-bgp.yaml"
}
elseif ($CNI -eq "cilium") {
minikube start --driver=docker --cni=cilium
$profileYaml = ".. /profiles/cilium-ebpf.yaml"
}
else {
Write-Host "[!] Invalid CNI: $CNI" return
}

4. Apply tuned profile for this CNI if (Test-Path $profileYaml) {
Write-Host "[*] Applying tuned CNI profile: $profileYaml" minikube kubectl -- apply -f $profileYaml | Out-
Null
}
else {
Write-Host "[!] Warning: Profile YAML not found for $CNI ($profileYaml)"
}

5. Enable metrics server
Write-Host "[*] Enabling metrics-server..." minikube addons enable metrics-server | Out-Null
minikube kubectl -- rollout status deployment/metrics-server -n kube-system --timeout=120s | Out-Null

6. Wait for all kube-system pods to be ready
Write-Host "[*] Waiting for kube-system and CNI pods..."
minikube kubectl -- wait --for=condition=Ready pods --all -n kube-system --timeout=5m | Out-Null

7. Deploy iperf3 pods
Write-Host "[*] Deploying iperf pods..."
minikube kubectl -- run iperf-server --image=cagedata/iperf3 --restart=Never --command -- iperf3 -s -p
5201 | Out-Null
minikube kubectl -- run iperf-client --image=cagedata/iperf3 --restart=Never --command -- sleep 3600 |
Out-Null

Wait for pods
minikube kubectl -- wait --for=condition=Ready pod/iperf-server --timeout=3m | Out-Null minikube
kubectl -- wait --for=condition=Ready pod/iperf-client --timeout=3m | Out-Null
8. Run iperf3 test
$server_ip = minikube kubectl -- get pod iperf-server -o jsonpath='{.status.podIP}' Write-Host "[*] Running
iperf3 test from client to server ($server_ip)..."

$iperfOutput = minikube kubectl -- exec iperf-client -- iperf3 -c $server_ip -p 5201 -J 2>$null if
($iperfOutput) {
$iperfOutput | Out-File -FilePath "$outdir\iperf3_${CNI}.json" -Encoding utf8 Write-Host "[OK] iperf3
results saved to $outdir\iperf3_${CNI}.json"
}
else {
Write-Host "[!] No output received from iperf3, test might have failed."
}
9. Collect system metrics
Write-Host "[*] Collecting resource usage..."
minikube kubectl -- top pods -n kube-system --no-headers | Out-File "$outdir\${CNI}_sys_usage.txt"
2>$null
10. Cleanup
Write-Host "[*] Cleaning up Minikube..." minikube delete | Out-Null
Start-Sleep -Seconds 15
Write-Host "[OK] Benchmark for $CNI complete. Results saved to $outdir"
}
== # MAIN LOOP
==
foreach ($cni in $CNI_LIST) { try {
Run-Benchmark -CNI $cni
} catch {
Write-Host "[!] Benchmark for $cni failed: $_"
}
Write-Host "`n[*] Cooling down before next test..." Start-Sleep -Seconds 60
}
Write-Host "`n[Done] All CNI benchmarks completed. Results stored in 'results/'"

Bandwidth test between all the CNI

Lessons Learned
Key Learnings

Following precise IETF benchmarking procedures is essential — adhering to
draft-ietf-bmwg-containerized-infra ensures accurate, reproducible measurements.
Coordinating multiple open-source tools (Docker, Kind, Minikube, iperf3, wrk2, and
Grafana) required consistent configuration parameters for fair comparison.
Understanding network behavior deeply matters — kernel-level differences in eBPF
(Cilium) and overlay tunneling (Flannel) strongly affect latency and jitter results.
Automation improved consistency — scripting benchmark runs and metric
collection reduced manual errors and timing mismatches.
Cross-tool validation mirrored real IETF workflows — the process of data verification,
review, and mentor feedback resembled collaborative review within working groups.
Visualization clarified performance trade-offs — plotting latency and throughput
graphs helped link numeric data to architectural patterns.

Project /
Repository

Contribution Status Link

AIORI-Benchmark-
Scripts

Automated Python and
Bash scripts for
benchmarking
Kubernetes CNIs
(Flannel, Calico, Cilium)
using Kind & Minikube

Submitted / Under
Review

[GitHub Link]

AIORI-Benchmark-
Data

CSV datasets
containing latency,
throughput, jitter, and
scalability metrics
collected during tests

Submitted [GitHub Link]

Team Name Institution Project Title Focus Area

L8NCY
Christ University,
Kengeri
Campus,Bengaluru

Benchmarking
Kubernetes CNIs
using BMWG
Methodology

Other →
Benchmarking
Methodologies for
Network Systems
(BMN)

RFC / Draft No. Title / Area Lifecycle Stage How This Work Relates

draft-ietf-bmwg-cont
ainerized-infra

Benchmarking
Methodology for
Containerized
Infrastructure
(BMWG)

Internet-Draft

Implements and validates
benchmarking procedures for
containerized environments
Sections 3 & 5 (Metrics and

Methodology).

RFC 2544

Benchmarking
Methodology for
Network Interconnect
Devices (BMWG)

Internet Standard
Used as a reference for throughput,

latency, and test repeatability
definitions.

Open Source and Community Contributions

Future Work
Extend benchmarking to multi-node and multi-cluster Kubernetes environments.
Include additional CNIs such as Weave Net and Kube-Router for broader comparison.
Automate real-time metric collection using Prometheus and Grafana APIs.
Integrate service mesh benchmarking (e.g., Istio, Linkerd) with existing test setup.
Share refined datasets and findings with IETF BMWG for future draft validation.

AIORI-2: Reporting and Standards Mapping

Date: 06/11/2025
Standards Reference

Question Response with Explanation

Does this work support, extend,
or validate an existing RFC?

Yes it validates performance benchmarking methodologies
from draft-ietf-bmwg-containerized-infra and partially aligns
with the measurement procedures in RFC 2544.

Could it influence a new
Internet-Draft or update
sections of an RFC?

Potentially yes results provide empirical data supporting
the applicability of BMWG benchmarking principles in
Kubernetes-based cloud infrastructures.

Any feedback or data shared
with IETF WG mailing lists (e.g.,
DNSOP, SIDROPS, DPRIVE,
QUIC)?

Not yet planned for submission to the BMWG mailing list
through AIORI coordination after mentor validation.

Planned next step (e.g., share
measurement dataset / open PR
/ draft text).

Share validated benchmarking dataset and methodology
summary with AIORI for forwarding to BMWG. Prepare a
short technical note for inclusion in future draft revisions.

Impact on Standards Development

References
draft-ietf-bmwg-containerized-infra – Benchmarking Methodology for Containerized
Infrastructure, IETF Benchmarking Methodology Working Group (BMWG).
RFC 2544 – Benchmarking Methodology for Network Interconnect Devices, IETF, March
1999.
AIORI Testbed Documentation: https://aiori.in/testbed
IETF BMWG Working Group: https://datatracker.ietf.org/wg/bmwg/
Kubernetes Documentation: https://kubernetes.io/docs/
Cilium Documentation: https://docs.cilium.io/
Calico Documentation: https://docs.tigera.io/calico
Flannel Project Repository: https://github.com/flannel-io/flannel

About the Authors
 L8NCY represents Christ University, Kengeri Campus,Bengaluru as part of the AIORI-2
Hackathon (Nov 2025). The team, consisting of Ritesh and Joel, focuses on the practical
implementation of IETF benchmarking standards and open-source contributions in cloud-
native network performance and containerized infrastructure benchmarking. Their work
bridges academic research with Internet performance standardization under the guidance of
Aditya Ghosh, AIORI Technical Mentor.

https://aiori.in/testbed
https://datatracker.ietf.org/wg/bmwg/
https://kubernetes.io/docs/
https://docs.cilium.io/
https://docs.tigera.io/calico
https://github.com/flannel-io/flannel

Reflections from the Team
Ritesh (Team Lead): “Implementing BMWG benchmarking in Kubernetes showed how
CNI configurations directly influence network performance and scalability.”
Joel (Developer): “This project improved my understanding of automation, network
tuning, and collaborative benchmarking workflows.”

Acknowledgments
 We thank the participating institutions, mentors, contributors, and organizations that
supported the sprint series.
 Special thanks to Aditya Ghosh, AIORI Technical Mentor, for his guidance and continuous
feedback throughout the benchmarking project. We also extend our gratitude to the AIORI
coordination team for providing the platform, resources, and technical framework aligned with
draft-ietf-bmwg-containerized-infra. Finally, we acknowledge Christ University, Kengeri
Campus, for academic support and encouragement during the implementation of BMN-07:
Kubernetes CNI Benchmarking.

