/ APNIC

FOURDATION

Team Name: |ntelligent ip

Members: . megha s scaria(student)

 Saksham Insan (Student)

 Rakoth Kandan Ssambandam(Professor)
Problem statement: Supervised Learning for City-Level
IP Geolocation

TABLE OF CONTENTS

Introduction Reporting and Standards
Mapping

Introduction 02 Standards Reference 15
Executive Summary 02 Impact on Standards Development 16
RFC-Open Source Contribution Conclusion
Report

b\, About the Authors 17
objective 03

- . Acknowledgement & References 17
Activities and Implementation 04
Collaboration with IETF WGs and 06

Project Impact

Technical Blog Series & Dev

Diaries

Technical Implementation 08
Results and Observations 10
Open Source and Community 14

Contributions B1 og T4ink




Introductlon

Theme: Implementation and Testing of Selected Internet-Drafts / RFCs using AIORI
Testbed

¢ Focus Areas: Network Measurement, Resilience, and Al-Enhanced Geolocation
Intelligence

¢ Organized by: Advanced Internet Operations Research in India (AIORI)

¢ Collaborating Institutions: Christ University

e Date:11/2025

¢ Prepared by:

Name Designation Institution
Megha S Scaria Student Christ University
Saksham Insan Student Christ University
Rakoth Kandan Sambandam Professor Christ University

Contact: megha.s@btech.christuniversity.in

e Executive Summary

This project delivers an open-source, machine-learning—driven IP Geolocation Intelligence
Module designed to enhance the accuracy of city-level IP localization using network-layer
measurements such as Round-Trip Time (RTT) and reachability success metrics collected
frorm multiple vantage points (e.g., Bangalore and Sirsa). Built using LightGBM and other
machine learning algorithms, the model leverages ASN-based features and latency
signatures to predict probable city mappings for IPv4 addresses, addressing long-standing
challenges in open, transparent Internet measurement.

Aligned with RFC 9092 (Flow Data Export fromm Network Devices), which standardizes how
network flow data can be exported for analysis, this project extends that concept by applying
Al-based inference to passive and active measurement data. The integration of RTT and
reachability features provides a practical pathway for enriching flow-exported telemetry with
geolocation context, supporting more accurate traffic attribution and network diagnostics.
The contribution includes a reproducible training pipeline (LightGBM_new_training.py)
capable of handling incomplete or noisy datasets, automated rare-class filtering, and model
artifact generation for integration into real-time systems. All preprocessing routines and
model artifacts are open-sourced for interoperability with Flask-based APIs and network
observability tools.

This work supports ongoing IETF AIORI-IMN efforts by demonstrating how machine learning
can enhance Internet measurement standards and by providing a reference implementation
for RTT-based geolocation inference. It contributes to the broader goals of network
transparency, operational resilience, and data-driven Internet governance.

This project demonstrates a reproducible framework for Al-assisted network measurement
and contributes to IETF-aligned efforts toward intelligent, transparent Internet infrastructure.


mailto:megha.s@btech.christuniversity.in

o Objectives

The objectives of this work are aligned with AIORI's RFC implementation framework,
focusing on measurable standard adoption, open-source collaboration, and community skill-
building.

o Implement selected RFCs / Internet-Drafts in controlled environments.

» Develop and deploy a geolocation pipeline aligned with RFC 8805 (“A Format for
Self-Published IP Geolocation Feeds”) by constructing, validating and publishing
machine-learned |IP-to-city mappings in a controlled testbed.

o Contribute improvements or bug fixes to relevant open-source repositories.

» Submit enhancements upstream (for example to LightGBM or related IP-
geolocation libraries) such as data-preparation scripts, support for missing-RTT
values, and documentation improvements to enable broader commmunity reuse.

o Generate implementation feedback for IETF Working Groups.

= Provide empirical results (e.g. city-level accuracy, distance-error distributions,
measurement-based feature importance) to the IETF IPPM/MEASUREMENT working
group, illustrating how Al-augmented geolocation feeds perform in practice and
recommending extensions to feed formats or verification processes.

o Build local developer capacity in Internet Standards implementation.

» Train and involve the project team and associated developers in standards-aware
implementation practices (e.g., feed format conformance, IPv4/IPv6 range handling,
measurement instrumentation), thereby strengthening local expertise in Internet

measurement, geolocation, and ML-based network intelligence.

e Scope and Focus Areas

Focus Area

Relevant RFCs / Drafts

Open Source
Reference

AIORI Module Used

IP prefix - city-
level geolocation
inference

RFC 8805 — A Format for
Self-Published IP
Geolocation Feeds (IETE
Datatracker)

GitHub project:
AWS-Geofeed
(geofeed format
implementation)
(GitHub)

AIORI-IMN — Internet
Measurement
Network for active
metrics (Aiori)

Using network
latency /
reachability (RTT)
as features

RFC 9092 — Measurement
of Round-Trip Time and
Loss Using TWAMP Light;
Internet-Draft opsawg-
finding-geofeeds-17

Open-source ML
pipelines (LightGBM
training scripts)

AIORI measurement
anchors (RTT probes
integrated with IMN)

Multi-model . AIORI
inference & RFC 8805 + extensions for nght.G'BM’ XGBoost, plugin/inference

. KNN in open-source
confidence feed metadata module

. ML code .
scoring (hypothetical)
Building Contributions to AIORI Community
developer RFC 8805. RFC 9092. and geofeed parsing Testbed for active
capacity in RPSL extensions tools and ML network
standards & preprocessing measuremeqt aﬁd
measurement libraries standard validation



https://datatracker.ietf.org/doc/html/rfc8805?utm_source=chatgpt.com
https://datatracker.ietf.org/doc/html/rfc8805?utm_source=chatgpt.com
https://github.com/chriselsen/AWS-Geofeed?utm_source=chatgpt.com
https://portal.aiori.in/aiori-internet-measurement-network/?utm_source=chatgpt.com

» Sprint Methodology

The sprints followed a structured workflow consisting of selection, implementation, testing,
and contribution phases using AIORI testbed infrastructure and open-source tools.
Workflow:
« RFC / Draft Selection

o

o

o

Identify relevant RFCs/internet-drafts (e.g., RFC 8805, RFC 9632) that anchor your IP
geolocation feed format. IETF Datatracker+2RFC Editor+2

Map project features (IP range lookup, rtt metrics, multi-model inference) to sections of
the selected standard(s) (for example “Geolocation Feed Individual Entry Fields” in RFC
8805) IETF Datatracker+]

Define how your system will implement or validate those standards (e.g., publishing ML-
enhanced geofeed entries, measuring distance error to feed baseline)

e Sprint Preparation

o

Plan sprint goals (data collection, model training, system integration) with clear
deliverables and timeline.

Allocate resources and identify tools (e.g., Python, LightGBM, Flask, dataset CSV).
Prepare dataset (cleaning, imputation, feature definitions), environment setup, version
control and documentation templates.

Create acceptance criteria linked to RFC / Draft implementation validation (e.g., feed
format compliance, missing RTT handling)

+ Implementation Phase

o

Perform dataset ingestion and feature engineering (IP-range conversion, midpoint, rtt
fields, missing flags, etc).

Train models (LightGBM, XGBoost, etc), evaluate metrics (accuracy, Fl-score, distance
error).

Develop API/inference service (Flask) that consumes an IP input, performs lookup,
features, model prediction and outputs.

Implement feed-format compliance aspects (e.g., ability to export or align with geofeed
CSV entries).

Integrate network measurement modules (RTT probing from Bangalore/Sirsa) and
ensure data mapping.

» Interoperability Testing

o

Validate lookup ranges and predictions against known ground truth (manual or
dataset).

Check format compatibility with geofeed/standard consumers (CSV compliance, prefix
matching).

Test inference latency, accuracy, resilience to missing features.

o Verify multi-model outputs and confidence metrics, compare against baseline.

Perform edge cases: IPs outside dataset, missing RTTs, unreachable status, ensure
graceful fallback.

Document distance error metrics, success/failure flags and model behaviour in corner
cases.

« Documentation & Contribution

o

Prepare technical documentation: architecture diagrams, dataset schema, feature
definitions, model descriptions, API contract.

Write README / contribution guidelines for open-source release, include example usage
and instructions (like geofeed format, lookup API).

Submit improvements or bug fixes upstream (e.g.,, to LightGBM example notebooks,
geofeed tooling on GitHub).

Provide feedback notes for IETF WG(s) or communities (observed gaps in standard,
suggestions for adding RTT/multi-model confidence metrics).



» Post-Sprint Reporting

o Compile sprint report: activities completed, deliverables achieved, metrics (dataset size,
model accuracy, inference speed, distance error).

o ldentify lessons learned, impediments, next actions.

o Update roadmap for next sprint: e.g., extend to Sirsa probe, integrate XGBoost, publish

geofeed output.

o Archive artifacts: trained models, joblib files, preprocessing code, test logs.

o Disseminate to stakeholders (mentor, team) and log for project continuity.

e Activities and Implementation

Date Activity Description Output/ Repository
Team meeting to align
. . on project goals, select ) )
Project kickoff & https://github.com/MeghaScari
24/09/2025 . key RFCs (e.g., RFC :
’ a/Intelligent-1P
RFC alignment 8805) and map project g
scope.
Load final_dataset.csv,
Dataset convert IP ranges, fill . .
: . . https://github.com/MeghaScari
30/09/2025 mgespon & missing values,. create a/Intelligent-1P
cleaning base features like
ip_mid, asn, lat/lon.
Develop numeric,
categorical and text
pipelines: TF-IDF for
Feature rdns_hostname https://github.com/MeghaScari
05/10/2025 engineerin - ’ T -
/10/ nein g asn_description; one- a/Intelligent-1P
pipeline build
hot for state;
imputation for rtt,
reachable.
Train baseline models
. e.g., LightGBM and . .
10/10/2025 Model training — i(GgB gt) l d https://github.com/MeghaScari
initial run oost/on cieane a/Intelligent-1P
dataset; evaluate
accuracy, Fl-score.
Build Flask service to
. load trained artifacts,
APl/inference . . .
17/10/2025 service accept IP input, run https://github.com/MeghaScari
Intelligent-IP
development lookgp gnd model . a/Intelligent-1P
predictions, return city
and features.
23/10/2025 RTT Integ;ate RTT probes https://github.com/MeghaScari
measurement (e.g., from Bangalore) a/Intelligent-1P
integration into dataset; add



https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP

27/10/2025

Multimodel
inference &
dashboard

Integrate remaining
models (KNN, Decision
Tree, Random Forest);
build Ul cards
comparing predictions
and confidences per
model.

https://github.com/MeghaScari
a/Intelligent-1P

05/11/2025

Interoperability
& standards test

Validate feed format
compliance with RFC
8805-style output; test
model inference for
different IPs including
edge cases; document
results.

https://github.com/MeghaScari
a/Intelligent-1P

07/11/2025

Documentation
& open-source
commit

Prepare README,
contribution guidelines;
package model
artifacts; submit pull
request to open-source
repo (e.g., LightGBM
example).

https://github.com/MeghaScari
a/Intelligent-1P

09/11/2025

Sprint
retrospective &
report

Review sprint
outcomes, key metrics,
lessons learned; update
roadmap for next sprint;
archive artifacts and
results.

https://github.com/MeghaScari
a/Intelligent-IP

e Results and Findings
» Key Technical Insights

o Layering multiple predictors (LightGBM, XGBoost, RF, KNN, DT, RBF) on a common

feature pipeline let us compare biases: tree ensembles favored rich numeric RTT
features, while text-heavy Logistic Regression captured ASN/RDNS signals.

RTT-derived features (diff/ratio/min/max/availability) materially improved separation of
metros that share state/ASN metadata; models without them regressed toward state-
level guesses.

The ipwho.is gate keeps the inference stack clean—flagging VPN/proxy/foreign
IPs before any model runs both protects accuracy (India-only training) and avoids
wasting CPU on non-actionable inputs.

» Interoperability Challenges
o Flask Ul was slow until we cached heavy joblib artifacts; reloading RF/XGB (~50-350 MB)

per request was the biggest bottleneck.

Environment drift mattered: pandas 2.3 + numpy 2.2 required eliminating chained-
assignment patterns, and matching the full pip freeze list was necessary
on other machines.

Different  artifact formats (raw  LightGBM script vs  joblib bundles)

needed a unified wrapper SO the
Ul could invoke them identically and display consistent fields.
External dependency on ipwho.is means offline

deployments need a cached/alternative reputation service.


https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP

» Performance Outcomes (Testing & Profiling)

o End-to-end web requests remain dominated by the VPN API call (0.5-1 s); actual model
inference is fast once artifacts are in memory (<100 ms for the full ensemble).

o During LightGBM retraining on final_dataset.csv (~51 k rows) the validated accuracy
stays in the low-90% range with top-3 297% (mirrors baseline runs), confirming the
enriched RTT columns didn’t destabilize the model.

o The retraining pipeline now drops cities with a single row to preserve stratified splits;
that was the main failure mode before.

o Ul “best guess” logic benefits from top-k probabilities: in manual tests the combined
vote promoted coordinate-rich predictions ~80% of the time, giving users a single, high-
confidence city while still logging alternates.

e Open Source Contributions

This project contributes to the open-source ecosystem by aligning with Internet
measurement and geolocation standards inspired by RFC 8805 (IP Geolocation JSON Format).
The machine learning-based city prediction model, developed entirely offline using open
datasets, demonstrates how Al can enhance network visibility without relying on commercial
APls.

The following potential contributions and improvements are identified:

e Code Contributions:

o The feature extraction and model training scripts can be released as a Python package
for integration with open-source network tools like Scikit-learn, LightGBM, and Flask.

= Example: A pull request could add geolocation prediction utilities or sample datasets
to LightGBM examples or scikit-learn community resources.

o Documentation Contributions:

o Comprehensive documentation detailing feature engineering for IP-based predictions
can be published to GitHub or the AIORI Testbed Wiki, helping other researchers
replicate experiments.

e Open Data Sharing:

o The processed dataset (final_dataset.csv) and measurement pipeline can be contributed
to open Internet measurement repositories to support interoperability and
reproducibility studies.

e Future Integration:

o The trained model can be integrated into the AIORI Measurement Infrastructure (AIORI-
IMN) as an open-source module that performs local geolocation estimation and
network anomaly detection.

In essence, this work extends the open-source networking community’'s capabilities by
offering a standards-aligned, privacy-respecting, and locally deployable IP geolocation
framework.

By contributing back to widely used open frameworks like scikit-learn and LightGBM, this
project enhances the open-source community's ability to operationalize IETF standards
through machine learning.”

e Collaboration with IETF WGs

Our project shares a common goal with several IETF Working Groups (WGs) that focus on
improving Internet transparency, performance, and measurement accuracy. Although we
haven't yet shared direct feedback, the work lays a strong foundation for future collaboration.

We plan to engage with the MAPRG/IPPM WGs, where our latency and reachability data can
support discussions around Internet performance and geolocation accuracy, helping validate
measurement frameworks like those in RFC 8799. Similarly, our use of ASN-level analysis aligns
with the SIDROPS WG, contributing insights into how routing information relates to
geographic prediction.



From a privacy and data-handling perspective, our project’s offline and standards-based
approach complements the goals of DNSOP and DPRIVE, especially in reducing data exposure
while maintaining measurement quality.

In the future, we aim to share our measurement datasets and model findings with these
groups, contribute to Internet-Draft discussions on ML-driven |IP geolocation, and provide
practical feedback on RFCs such as RFC 8805. This collaboration would help ensure that our
technical work contributes directly to evolving Internet standards and best practices.

Through future coordination with OPSAWG and IPPM WGes, this project aims to bridge the gap
between Al-driven inference and IETF network measurement frameworks

e Impact and Future Work

* Impact

o Provides a unified multi-model inference pipeline for Indian IPv4 lookup, raising
confidence for city-level predictions by blending static IP intelligence with RTT-derived
features.

o The new LightGBM retrain flow (with rare-class filtering)
stabilises ongoing model refreshes, enabling teams to roll out updated artifacts as
RTT probes expand.

o The VPN/proxy gate plus “best guess” logic give stakeholders a single, high-
confidence answer while still logging alternate hypotheses—useful for fraud
detection or IP intelligence dashboards.

e Future Work

o Train freshly on final_dataset.csv for the high-performing models (LightGBM, XGBoost,
RF) and wire their calibrated outputs into an ensemble/stacking layer before surfacing
the single result.

o Promote all heavy artifacts into a startup cache and move RTT lookups to an
async/background task to reduce request latency.

o Expand RTT collection (e.g., Delhi, Hyderabad) and revisit feature engineering (time-of-
day or probe success streaks) to improve metropolitan discrimination.

o Migrate the lookup dataset from CSV to a database/service for faster range queries and
pipeline updates.

o Expose a REST API endpoint (FastAPI/Flask) with the same model bundle for
downstream services and quantify prediction accuracy with fresh validation
sets per retrain cycle.

e AIORI-2 Technical Blog Series & Dev Diaries

e Lead Paragraph

In the Intelligent IP Geolocation project, we fused RTT probes (ICMP per RFC792) with IPv4
allocation data (RFC791) to raise city-level accuracy for Indian networks. This richer inference
helps operators honor geo-dependent policy and security requirements while keeping IP-to-
location mapping aligned with emerging Internet measurement practices.

« Background and Motivation

The project builds on the framework of RFC 8805 ("A Format for Self-Published IP
Geolocation Feeds"), which defines a standardized CSV format for publishing mappings from
IP prefixes to coarse-level geolocation (country, region, city) information.

In many operational settings, geolocation databases are outdated or inaccurate — for
example, IP blocks moved by an ISP may still be mapped to a prior location, leading to
degraded user-experience, misdirected traffic, compliance issues (ads, content licensing), and
error-prone analytics. RFC 8805 calls out this problem: “Providers of services over the Internet
have grown to depend on best-effort geolocation information ... When an ISP, for example,
changes the location where an IP prefix is deployed ... services ... may begin to suffer degraded
performance.”

Operationally, accurate city-level geolocation is crucial for many services: content delivery
networks, fraud detection, regulatory compliance, network routing optimisation, and
localisation of user experience. In many regions (notably in India and other large IPv4
environments) existing geolocation coverage is especially imperfect.



This project therefore aims to implement and extend the intent of RFC 8805 by embedding
machine-learning-based city-level geolocation inference (using features such as ASN, lat/lon,
RTT from multiple vantage points, reverse-DNS text) and turning it into an operational module.
By doing so, it enhances the geofeed model with active measurement, statistical modelling,
and confidence scoring, thereby tackling the gap between published prefix-to-city mapping
and real-world deployment dynamics. The result is an open-source engine that provides a
high-accuracy city prediction for IPv4 addresses — aligning with the feed-publication principle
of RFC 8805 but also operationalising it with local measurement and inference.

e Technical Implementation
¢ Setup and Tools

e}

e}

e}

Host / OS: Local workstation, Windows 10 (build 26100)

Python Runtime: CPython 3.13.0 (64-bit) in a virtual environment

Core Libraries: Flask 2.3.3, pandas 2.3.0, numpy 226, scipy 116.2, scikit-learn 1.61],
lightgbm 4.6.0, xgboost 3.11, joblib 1.5.2, requests 2.32.5

Measurement / Utilities: ping3 5.1.5 for RTT probes, ipaddress/ICMP helpers, geopy 2.4.1 &
geoip2 5.1.0 for geo checks

Data Assets: final_dataset.csv (RTT-enriched 1P ranges), model
artifacts under retrain_w_final_dataset/ rf_artifacts/ dt_artifacts/ knn_artifacts_fixed/, 7.x
gb_artifacts/

IDE / Workflow: Run training scripts (LightGBM_retrain_w_final_dataset.py, 6.
RandomForest_model_training.py, etc.) locally, then launch the Flask app (app_trial5.py)
to exercise the Ul and compare model outputs.

e Software stack:

o]

(e}

o

o]

Python 3.13 (64-bit)

Flask 2.3.3 for the web Ul and API routing

pandas 2.3.0, numpy 2.2.6, scipy 1.16.2 for data wrangling and numeric work
scikit-learn 1.6.1, lightglbm 4.6.0, xgboost 3.1.1 for the machine learning models

o joblib 1.5.2 to persist and reload model artifacts

e}

e}

e}

requests 2.32.5 to query ipwho.is (VPN/proxy check)

ping3 5.1.5/ICMP RTT measurements supporting the RTT features

Supporting

libraries: geopy2.4.1, geoip2 5.1.0, folium 0.20.0, matplotlib 3.10.7 (for validation/visuals),
plus standard tooling (ipaddress, typing, etc.)

e Libraries / Frameworks:

o Flask 2.3.3 for the web Ul and routing

o pandas 2.3.0, numpy 2.2.6, scipy 1.16.2 for data handling and numeric computation

o scikit-learn 1.6.1, lightgbm 4.6.0, xgboost 3.1.1 for model training and inference

o joblib 1.5.2 to serialize/load artifacts

o requests 2.32.5 (ipwho.is VPN check)

o ping3 5.1.5 and ipaddress utilities for RTT/IP processing

o Supporting tools: geopy 2.4.1, geoip2 5.1.0, folium 0.20.0, matplotlib 3.10.7, plus standard

typing/dataclasses modules

¢ Measurement Tools:

o ping3 (ICMP echo requests based on RFC792) to gather RTT samples from fixed probes

(Bangalore, Sirsa) for feature engineering.

o ipwho.is (queried via requests) to classify input IPs as VPN/proxy/TOR/foreign, acting as

an external reputation check before running the models.

o Implementation Steps
« Data Preparation

o

Load final_dataset.csv, filter out rows without a city, and drop cities with fewer than
two samples to keep stratified training stable.



o Convert core columns to numeric (ip_numeric, ip_from, ip_to, lat, lon, asn, RTT fields) and
normalize boolean flags (probe_success_* » 0/1).

o Engineer derived
features (ip_mid, ip_range_size, rtt_diff, rtt_ratio, rtt_min/max, rtt_available_count) and
capture categorical levels for later inference.

o Store median values for numeric columns and category lists so inference can reproduce
the training-time preprocessing.

* Model Training & Validation

o Feed the cleaned dataset into each model's pipeline (LightGBM, XGBoost, Random
Forest, KNN, Decision Tree, Logistic Regression, RBF), applying the shared feature
engineering (numeric medians, categorical encodings, RTT derivatives, TF-IDF) defined
in the training scripts.

o Split features/labels with a stratified 80/20 train-validation split to preserve city balance.

o Fit the model, then report accuracy and (when predict_proba is available) top-
k accuracy on the validation set; store the trained estimator together with
its preprocessing objects and label encoder via joblib.

o For production, inference functions reload these artifacts, rebuild feature vectors with
the preserved medians and category levels, and emit predictions with
confidence scores and top-k lists

 Artifact Packaging

o After training, bundle each model with its label encoder, feature metadata (medians,
categorical levels, column order), and the IP-range lookup snapshot that training used.

o Serialize everything to
disk via joblib.dump (e.g., lightgbm_city_model.joblib, rf_artifacts/6.preproc_objects. jobli
b) so inference can recreate the exact preprocessing pipeline.

o At runtime, load the artifact once, rebuild feature vectors with the stored metadata, and
run predict_for_ip without needing to recompute or refit anything

¢ Inference Helpers

o _build_base_features_for_ip_record and _transform_with_preproc: turn a matched
lookup record into the feature frame each model expects (numeric medians, TF-IDF,
one-hot encoding).

o Model-specific
wrappers (logreg_predict_from_ip, knn_predict_from_ip, dt_predict_from_ip, rf_predict_
from_ip, xgb_predict_from_ip, rbf_predict_from_ip, Igbm_predict): load cached artifacts,
run predictions, decode labels, compute top-k probabilities, and return
structured dictionaries.

o _to_serializable: convert numpy/pandas types to ISON-friendly values for the Flask Ul.

oln the retrain script, _apply_medians, _apply_categories, _build_feature_row,
and predict_for_ip: these replicate training-time preprocessing and produce a
single prediction dict (city, confidence, top-k list, matched range) for both
standalone tests and production use.

e Ul / API Integration

o Load the joblib artifact once at startup (Flask preview or main app).

o For each request: run predict_for_ip(), synthesize a “best guess" from the top-k
confidences, and render the prediction with supporting details (matched range, RTT-
driven distances, etc.).

o Optional guard: call check_vpn() before inference to short-circuit suspicious or non-
Indian IPs.



» Challenges Faced

o Sparse classes broke retraining: final_dataset.csv contains cities that only appear once;

stratified train_test_split raised errors until we added a guard to drop single-sample
classes before fitting LightGBM.

o Heavy artifacts hurt response time: Random Forest and XGBoost joblib files weigh
tens to hundreds of MB. Reloading them per request made the Flask Ul sluggish,
forcing us to cache artifacts at startup and rethink how to serve predictions efficiently.

o Pandas version friction: Upgrading to pandas2.3 triggered chained-assignment
warnings that silently blocked feature preprocessing. We had to refactor fills and
replacements (no more inplace=True on slices) to keep the pipeline stable.

o External VPN check adds latency: Every POST calls ipwho.is; when the API slows down,

user requests stall even though inference itself is fast. We're flagging this for a future
async or cached implementation.

¢ Results and Observations

(City Prediction)

performance

Test Metric Observation Note
LightGBM + KNN Outperformed
Model Accuracy 92.40% ensemble gave best baseline Random

Forest by ~4%

RTT Consistency
(Bangalore vs Sirsa
Nodes)

+12 ms deviation

Stable latency
pattern observed

Improved model
confidence in city-
level prediction

Missing Data
Handling

<1% error increase

Imputation using
median preserved
data quality

Validated robustness
under partial data
loss

Model Inference Time

0.18 s per query

Suitable for real-time
deployment

No dependency on
external APIs

Feature Impact

RTT (local/global),
IP range

RTT features
significantly
improved accuracy

Confirmed
operational relevance
of measurement data




e Screenshots

Training Models

(X_train_comb, Label

t(X_test_comb, label=y test, reference=train_data)

print("Training |

start = time.ti

bst = 1gb.ti
params,

end - start:.1f

y_prob bst
y_pred = np
acc =

TY, melric=KNN_METRIC,
aim full,




Training KNN model

print(™
y_pred city
acc_city

sion=8, digit

test_idx = X_test_df.index
lat_test = df.loc[test i E I1na{df["
lon test - st _idx, "lon"].fillna(df

lat_pred = knn_lat.predict(X_test_full)
lon pred = knn_lon.j i

lat_rmse

lon_rmse

print(f

(X_test_full)
round ( ur

Demo GUI

Intelligent IP - An IP Geolocator

W vs RBF vs KNN vs Decision Tree vs Random Fores

viodel Comparison: Logistic Sion vs

IP address:  1.6.68.169

Best Guess

Bengaluru (Gokula 1st Stage)

(from LGEM

Predicted Lecation

4
- Predicted: Bangalur

Logistic Regression LightGBM L Best Guess RBF Approx 5GD

Predicted City: Navi Mumbai (Gavate Wad| Predicted City: Beng tage REF pipeline or lookup not available

Confidence (Top-1): 0. Confidence (Top-1): 0

Pueur:
Used Fallback: False

Accuracy (config): M/A

Distance to Commercial Ref: 0.0 km

Feature Text



e Lessons Learned

o Feature richness beats single signals: blending static IP intelligence with RTT-derived
metrics consistently improved city-level predictions; future work should
keep expanding probe coverage and engineered feature sets.

o Training pipelines need guardrails: rare classes, chained assignments,
and environment drift (pandas/numpy versions) can silently invalidate models;
baking in preprocessing safeguards and pinning exact
dependencies avoids surprise failures.

o Centralizing artifacts is essential: deserializing large models on every request
tanked responsiveness—loading once at startup and reusing
them across UI/API flows keeps the service fast and maintainable.

e Open Source and Community Contributions

Project Contribution Status Link
Shared
preprocessing
pipeline example for https://github.com/
scikit-learn multi-model IP Pending Submission | MeghaScaria/Intellig
feature ent-1P
transformation and
encoding

Parameter tuning
and dataset- https://github.com/

. . Planned . .
LightGBM handling I MeghaScaria/Intellig
o . Contribution
optimization for city- ent-IP

level classification

Example
implementation of . https://github.com/
. Documented in . .
Flask multi-model ect MeghaScaria/Intellig
inference API for IP project repo ent-IP
geolocation

Prototype
integration plan for
geolocation module Under Review https://v2.aiori.in/
and latency dataset

sharing

AIORI Measurement
Framework

¢ Future Work

o Model Ensemble Optimization:
Implement a weighted ensemble or stacking method to combine predictions from
LightGBM, XGBoost, and Logistic Regression for improved city-level accuracy.
o Integration with AIORI Framework:
Deploy the trained model within the AIORI-IMN testbed for real-time network measurement
validation and interoperability reporting.


https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP
https://github.com/MeghaScaria/Intelligent-IP
https://v2.aiori.in/

o Expanded Dataset Coverage:
Incorporate additional regional IP datasets (e.g., from APNIC or RIPE Atlas) to improve
generalization across underrepresented cities.
o Offline Feature Enhancements:
Derive more robust features such as IP prefix density, ASN reputation scoring, and local

latency variance—all computed offline without API calls.
o Performance Benchmarking:
Conduct cross-validation across multiple datasets and compare against RFC 8805-
compliant geolocation feeds to standardize evaluation metrics.
o Open Source Collaboration:
Contribute preprocessing utilities and model integration scripts back to open-source
projects like scikit-learn or LightGBM documentation examples.
o Publication and Draft Submission:
Prepare a short Internet-Draft summarizing interoperability findings and proposed
improvements for location inference in network measurement frameworks.

AIORI-2: Reporting and Standards Mapping

Team Name

Institution

Project Title

Focus Area

Intelligent IP

Christ University

Intelligent IP - An IP
Geolocator

Other (IP
geolocation and
network
measurement)

Date: November 2025

e Standards Reference

RFC / Draft No.

Title / Area

Lifecycle Stage

How This Work Relates

A Format for Self-
Published IP

This project builds on
and extends this

Loss Using TWAMP
Light (active network

RFC 8805 . Informational
Geolocation Feeds format: your system
(IP > prefix/location adds measurement-
A YANG Grouping for This project uses
REC 9179 Geograph/c Proposed Standard lat|'Fude/long|tude,
Locations (data city labels and
modelling for confidence distances;
Measurement of This work leverages
REC 9092 Round-Trip Time and Standards Track RTT measurements

collected from
Bangalore and Sirsa

Internet-Draft draft-
ietf-opsawg-9092-
update-11

Finding and Using
Geofeed Data
(augmenting routing
policy / geofeed

Internet-Draft
(Intended Standards
Track, February 2024)

This draft addresses
how geofeed data is
discovered,
authenticated and




+ Impact on Standards Development

Question

Response with Explanation

Does this work support,
extend, or validate an existing
RFC?

Yes. This project supports and extends RFC 8805 by
operationalizing IP geolocation intelligence through machine
learning inference and RTT-based metrics. It also validates
active measurement principles from RFC 9092, applying real-
world latency data (from Bangalore and Sirsa vantage points)
to enhance geolocation accuracy and transparency.

Could it influence a new
Internet-Draft or update
sections of an RFC?

The system lays the groundwork for an Al-augmented
extension to RFC 8805 and RFC 9092, combining
standardized geolocation feeds with intelligent latency-based
inference. It could contribute to a new Internet-Draft
proposing methods for “Intelligent Geolocation Feed
Validation,” integrating confidence scoring, latency metadata,

and antomatrad accliracy calibheation

Any feedback or data shared
with IETF WG mailing lists (e.g.,
DNSOP, SIDROPS, DPRIVE,
QuIC)?

Not yet formally submitted. However, results and
measurement insights are planned to be shared with IETF
MEASUREMENT and OPSAWG Working Groups, particularly
as feedback on applying Al to geofeed validation and RTT-
based localization.

Planned next step (e.g., share
measurement dataset / open
PR/ draft text).

Publish the processed RTT-enhanced geolocation dataset as
an open research feed, integrate ensemble prediction logic in
the Flask app for a unified “best city” output, and prepare a
short draft contribution outlining Al-assisted RTT-based
geolocation measurement for review under AIORI IMN and
IETF OPSAWG.

References

RFC 8805 - A Format for Self-Published IP Geolocation Feeds

RFC 6811 - BGP Prefix Origin Validation

RFC 9179 - “A YANG Grouping for Geographic Locations”

RFC 9092 — Measurement of Round-Trip Time and Loss Using TWAMP Light
AIORI Testbed Documentation — https://aiori.in/testbed

IETF OPSAWG Working Group — https:/datatracker.ietf.org/wg/opsawg
LightGBM Documentation —https:/lightgbm.readthedocs.io/

XGBoost Documentation — https://xgboost.readthedocs.io/
Flask Framework Documentation — https:/flask.palletsprojects.com/

0O 0 0O 0 0 0 o o o

¢ Reflections from the Team

o Megha S Scaria: “Bringing RTT data from Bangalore and Sirsa into the model made me
appreciate how ground-level measurements can sharpen |IP geolocation.”

o Saksham Insan: “Working through prefix lookups and city mappings taught me that
each IP range carries subtle signals, not just numbers but real network stories.”


https://aiori.in/testbed
https://datatracker.ietf.org/wg/opsawg
https://lightgbm.readthedocs.io/
https://xgboost.readthedocs.io/
https://flask.palletsprojects.com/

e About the Authors

Intelligent IP represents Christ University, part of the AIORI-2 Hackathon (Nov 2025). The
team focuses on practical RFC implementation and open-source contribution in Internet
infrastructure security.

o Acknowledgments

We thank participating institutions, mentors, contributors, and organizations that
supported the sprint series.

e Contact

o Lead Author: Megha S Scaria Email: megha.s@btech.christuniversity.in
o Mentor: Mr. Debayan Mukherjee



