B /ol
/e

AIORI-2

HAGKATHON 2025

n'"‘ FlN = '
GH J.
<y

ILIL, ‘EEHS
NG

Team Name: DNinjaS

Members: . sarthak Santosh Dhamale(Student)

« Ayush Harichandra Nakhale (Student)

« Bhagyashri Tanaji Thorat(Professor)
Problem Statement: Website Health Monitor with Multi
-Channel Alerts (Django)ver NATS

TABLE OF CONTENTS

Introduction Reporting and Standards
Mapping

Introduction 02 Standards Reference 10

Executive Summary 02 Impact on Standards Development 10

Overview 02

RFC-Open Source Contribution Conclusion

Report

Scope And Focus Areas 03 Rbout the Authors n

Sprint methodology 04 Acknowledgement & References il

Contribution & impact 05

Technical Blog Series & Dev

Diaries

Technical Implementation 07
Results and Observations 08
Open Source and Community 09

Contributions B1 og T4ink




Introduction

e Theme: Implementation and Testing of Selected Internet-Drafts / RFCs using AIORI
Testbed

* Focus Areas: Website Health Monitor with Multi-Channel Alerts (Django) — based on
HTTP (RFC 9110/9112/9113/9114), JISON (RFC 8259), ICMP (RFC 792/4443), TLS (RFC 8446),
SMTP (RFC 5321/5322/8314), and Web Push & WebSocket (RFC 8030/6455).

» Organized by: Advanced Internet Operations Research in India (AIORI)

« Collaborating Institutions: International Institute of Information Technology, Pune /
AIORI Anycast & Measurement Nodes Network

« Date:11/2025

* Prepared by:

Name Designation Institution
. International Institute of
Ayush Harichandra Nakhale Student rnat! Y
Information Technology, Pune
International Institute of
Sarthak Santosh Dhamale Student nrernationat Nstitute o
Information Technology, Pune
. . International Institute of
Bhagyashri Tanaji Thorat Professor nrernationat INSttute o

Information Technology, Pune

Contact: sarthak.s.dhamale@gmail.com 8799981639 ; ayushnakhale251@gmail.com 9673572354

e Executive Summary

The project “Website Health Monitor with Multi-Channel Alerts” was developed under the
AIORI 2.0 Hackathon to implement and test key IETF RFCs related to website availability,
transport security, and real-time communication. The implementation focuses on building a
Django-based system capable of continuous website health monitoring, automated outage
detection, and multi-channel alerting (In-App, Email, and SMS).

Through this project, RFCs such as HTTP Semantics (RFC 9110/9112/9113/9114), ICMP (RFC
792/4443), TLS 1.3 (RFC 8446), SMTP (RFC 5321/5322/8314), JSON (RFC 8259), and Web Push
(RFC 8030/8292) were implemented in a controlled test environment.

The contribution provides a working open-source prototype that integrates seamlessly with
AIORI's testbed for Internet measurement and monitoring, enabling real-time website status
tracking and alerting across multiple channels. This aids in understanding Internet service
reliability from end-user and node perspectives, aligning with AIORI's mission of improving
Internet resiliency and measurement infrastructure in India.

« Overview

Implement website monitoring RFCs in a controlled Django environment, contributing
directly to open-source HTTP and notification tools. This work generates implementation
feedback for future IETF standards on web reliability and push protocols, while building local
developer capacity in network observability and automation.


mailto:sarthak.s.dhamale@gmail.com
mailto:ayushnakhale251@gmail.com

« Objectives

o Implement selected RFCs / Internet-Drafts related to website monitoring and
communication protocols in a controlled Django environment.

o Contribute improvements and documentation to open-source repositories relevant to
HTTP monitoring, email handling, and notification systems.

o Generate implementation feedback for future IETF work on web reliability, alerting
systems, and push notification protocols.

o Build local developer capacity in Internet standards implementation, particularly in
network observability and alert automation.

e Scope and Focus Areas

Focus Area

Relevant RFCs /
Drafts

Open-Source
Reference

AIORI Module Used

Website Health RFC 9110-9114 Django REST AIORI HTTP
Monitoring (HTTP/1.1-HTTP/3), | Framework, Measurement

RFC 8259 (JSON) Requests Testbed
Network RFC 792 (ICMPva), | PythonICMP AIORI Latency &
Reachability RFC 4443 (ICMpye) | MPdute, AlOR Availability Module
(Ping/ICMP) anchor scripts

Requests (HTTPS AIORI Secure
Transport Security RFC 8446 (TLS 1.3) q Connectivity

checks), OpenSSL

Module
! ificati i AIORI
Email Notification | RFC 5321/5322/ Django SMTP Communication
System 8314 (SMTP) Backend Comm.
RFC 6455

WebSocket & Push
Alerts

(WebSocket), RFC
8030/ 8292 (Web
Push)

Django Channels,
Service Worker API

AIORI Web
Notification Module




e Sprint Methodology

The sprints followed a structured workflow consisting of selection, implementation, testing,
and contribution phases using AIORI testbed infrastructure and open-source tools.
+ Workflow:
* RFC/ Draft Selection

[o]

o 0O 0O o o

o

o

o

o

o

Relevant RFCs were selected based on their direct applicability to web health
monitoring:

RFC 9110-9114 (HTTP/11-HTTP/3): Used for website status checks via Django backend.
RFC 792 / 4443 (ICMP): Implemented partially for ping-based uptime verification.

RFC 8259 (JSON): Used in AJAX responses to display UP/DOWN status dynamically.

RFC 8446 (TLS 1.3): Referenced for HTTPS validation, planned for secure-check feature.
RFC 5321 / 5322 (SMTP) and RFC 8314: Referenced for email alerts (backend setup
incomplete).

Sprint Preparation:

Frameworks Used: Django, Bootstrap 5, AJAX, Celery, Chart.js
Database: SQLite (default Django DB)

Environment:

Python virtual environment, folder path C\Users\sarth\OneDrive\Documents\AIORI2-
Project12\FRONT\src

Version Control:

Git initialized in /EFRONT folder and connected to GitHub.

Testing Setup:

Localhost-based monitoring of real and test URLs using Django views and AJAX
requests

Implementation Phase:

Sprint Goal Progress
Sprint 1 Setup pjango models, base templates, Completed
and navigation pages
) Implement AJAX website UP/DOWN .
Sprint 2 check using HTTP requests Working successfully
. Integrate Celery for periodic . .
Sprint 3 background website checks Basic working
) Build dashboard layout and design
Sprint 4 . . Ul completed
uptime graph interface
. Notification channels (in- In App Notifications
Sprint 5 . .
app/email/SMS) implemented

* Interoperability Testing:
Testing focused on verifying website status checks and Celery scheduling:

o

o

o

Confirmed HTTP status responses using requests module (RFC 9110 compliance).

AJAX integration successfully displayed real-time UP/DOWN status without page reload.
Celery tested for background task execution (interval runs confirmed, not yet RFC-
timed).

Notification and alert channel tests deferred to next phase.



« Documentation & Contribution:

o Each sprint committed and documented in the GitHub repository.

o README updated with setup commands, environment info, and RFC references.
o Weekly mentor meetings logged development progress and pending issues.

» Post-Sprint Reporting:

o The frontend, website check system, and Celery monitoring loop were demonstrated as
a working proof of concept with In App notifications.

o Email/SMS alerts are part of upcoming implementation stages.

o Integration readiness for AIORI testbed latency comparison noted for future testing

phase.

o Activities and Implementation

Date Activity Description Output / Repository
Created the Django
project, set up base | https://github.com/
templates Starc6254/DNinjaS-
10/10/2025 (index.html, Website-Health-
about.html, Monitoring--AlORI-
how_it_works.html), | 2-
and configured
Implemented real- .
time UP/DOWN https://github.com/
Sprint 2: Website website check using Starc6254/DNinjaS-
13/10/2025 Availability Check Python requests Web.site.—Health—
(HTTP) (RFC 9110) and Monitoring--AlORI-
AJAX JSON &
response
Intefgre;:ed ferljri/.to https://github.com/
Sprint 3: Celer Eeelgkorrouanudc():h:cll(cs Starc6254/DNinjas-
18/10/2025 print s:Letery ground che Website-Health-
Background Monitoring | for website uptime o
. Monitoring--AlORI-
and response time 5.
at fixed intervals =
Developed
dashboard interface | https://github.com/
. with Bootstrap 5 Starc6254/DNinjaS-
S t 4: Dashboard Ul .
22/10/2025 prin ashboar and Chart.js for Website-Health-
Design . . .
visual uptime Monitoring--AlORI-
display (using demo | 2-
data).



https://github.com/Starc6254/DNinjaS-Website-Health-Monitoring--AIORI-2-
https://github.com/Starc6254/DNinjaS-Website-Health-Monitoring--AIORI-2-
https://github.com/Starc6254/DNinjaS-Website-Health-Monitoring--AIORI-2-
https://github.com/Starc6254/DNinjaS-Website-Health-Monitoring--AIORI-2-

e Results and Findings

During testing, the Website Health Monitoring (WebCheck) system successfully performed
real-time website checks using HTTP requests and AJAX updates. The application accurately
showed whether a site was UP or DOWN without reloading the page.

The Celery background task worked for periodic checks, but the timing intervals sometimes
varied, which will need tuning. The dashboard Ul and graph section were completed but
currently display demo data instead of live results.

Some challenges included connecting notifications to live events and ensuring Celery
followed exact intervals. Despite these, the system proved that Django and Celery can
effectively handle website monitoring in line with key RFCs such as HTTP (RFC 9110) and ICMP
(RFC 792).

Overall, the project achieved a functional prototype that can be extended with alerts,
analytics, and AIORI testbed integration in future stages.

e Open-Source Contributions

The project code was maintained in a local Git repository throughout the development
phase, with regular commits for each sprint. The repository includes Django source files, Celery
scripts, AJAX integration, and frontend templates.

While no external pull requests were made, the work follows open-source practices with
clear commit messages, a structured directory, and detailed documentation. The project is
planned to be uploaded to the AIORI Hackathon GitHub organization for mentor review and
future collaboration.

« Documentation includes:

o A step-by-step README with setup instructions.
o RFC references linked to implemented modules.
o Notes on Celery, AJAX, and monitoring setup for reproducibility.

This groundwork ensures that the project can be easily extended or contributed to by other
teams in the AIORI network.

e Collaboration with IETF WGs

The project was developed by following the technical guidelines defined in several IETF RFCs
related to web protocols and monitoring standards. While there was no direct interaction with
IETF Working Groups, the work aligns closely with the goals of the following groups:

o HTTPBIS WG - for HTTP semantics and web performance (RFC 9110 series).
o OPSAREA WG - for operational measurement and network monitoring practices.
o SEC WG /TLS WG - for secure communication standards (RFC 8446).
o EMAILCORE WG - for email delivery and SMTP reliability (RFC 5321/5322).
Future phases aim to share implementation feedback and results through AIORI channels to
the broader IETF community, especially WGs focusing on Internet operations, measurement,
and security.

e Impact and Future Work

The Website Health Monitoring (WebCheck) project helped us understand how different
Internet standards like HTTP, ICMP, and SMTP work together in real monitoring systems. It also
gave us hands-on experience using these RFCs in a real Django-based setup.

This project can later become part of the AIORI Internet Measurement Network (AIORI-IMN)
to monitor websites and analyze uptime from different regions.

In the next phase, we plan to:
o Complete the email, SMS notifications.
o Connect our system with the AIORI testbed for distributed latency testing.

These improvements will make WebCheck ready for use in real AIORI experiments and future
collaborations with global Internet research teams.



e Lead Paragraph

In the AIORI-2 Hackathon, Our team explored how website uptime directly impacts internet
reliability and user trust. Implementing a Website Health Monitoring framework ensures
standards-based communication and alerting.

« Background and Motivation

Website downtime affects reliability, user trust, and overall Internet performance. The
Website Health Monitor with Multi-Channel Alerts project implements several key RFCs —
HTTP (RFC 9110-9114) for web availability checks, ICMP (RFC 792) for reachability, TLS (RFC 8446)
for secure communication, and SMTP (RFC 5321/5322) for alert delivery.

These standards together enable automated detection of website outages and immediate
user notifications through multiple channels. This operationally supports Internet resilience
and observability, helping administrators identify downtime faster and maintain service
continuity across networks — a goal aligned with the AIORI Internet Measurement framework.

e Technical Implementation
1. Setup and Tools

Operating System: Windows 11 (Development Environment)

Framework: Django 5.0 (Python-based web framework)

Programming Language: Python 3.12

Database: SQLite (default Django database)

Task Scheduler: Celery 5.4 with Redis (for background monitoring tasks)
Frontend Tools: HTMLS5, Bootstrap 5, AJAX, Chart.js

o Monitoring Libraries: requests, socket, ssl, time, subprocess

o Email / SMS Setup: Django SMTP backend, Twilio (test mode)

o Version Control: Git (Local repository under AIORI2-Project12/FRONT/src)

o Testing Tools: Local ping commands, HTTP response validation, and console logs

O o o o o O

2. Implementation Steps

o Initialized Django Project Environment — Created the project structure (src) and set up
base templates for homepage, about, and how-it-works pages.

o Developed Website Check Function — Implemented HTTP-based health checks using
Python's requests library following RFC 9110/9112 for status validation.

o Added AJAX Integration — Used JSON (RFC 8259) responses to update the webpage
dynamically without reload when checking site status.

o Configured Celery for Background Monitoring — Integrated Celery with Redis to
perform automated periodic checks for uptime and downtime detection.

o Designed Dashboard Interface — Built a responsive Bootstrap 5 dashboard and
embedded Chart.js graphs for visualizing uptime and latency trends.

3. Challenges Faced

o Celery Interval Accuracy:

o The Celery task scheduler sometimes executed checks more frequently than the user-
defined interval (e.g., 6-7 seconds instead of 15 seconds). This required tuning broker
settings and understanding Celery's timing behavior beyond the basic
documentation.

o Notification Integration:

o Although the models for in-app and email/SMS notifications were created, connecting
them to live events and ensuring they triggered correctly during downtime proved
challenging due to asynchronous task handling.

o RFC Mapping and Implementation:

o Applying HTTP (RFC 9110) and ICMP (RFC 792) semantics to real-time monitoring
required simplifying protocol behaviors within Django’s request model, as raw ICMP
operations are restricted in user-space.

o Testing Environment Limitations:

o Since the AIORI testbed access was simulated locally, we could not perform large-
scale distributed monitoring or latency comparison across multiple nodes.



e Results and Observations
Include key metrics, results, and graphs. Example table below:

Test

Metric

Observation

Note

Website Status
Check

HTTP Response
(200 /404 /500)

Correctly identified
UP/DOWN status of
target URLs

Based on RFC 9110
HTTP semantics

AJAX Update

Poll Interval: 5-10
sec

Real-time frontend
updates without
reload

JSON-based
responses under RFC
8259

Celery Background
Check

Interval Set: 15 sec

Tasks executed but
sometimes repeated
every 6-7 sec

Needs broker
configuration tuning

Ping (ICMP)
Simulation

Latency 120-300
ms

Average response
time on local test
URLs

Simulated AIORI
anchor environment

Dashboard Graph

Chart.js rendering

Displayed demo
data successfully

Dynamic data
binding in next
phase

,,,,,,,,,

Whastsapp - Ping Hatsry

Website URL

Status

Checked At (IST)




e Lessons Learned

o Understanding how different RFCs (HTTP, ICMP, SMTP) interact in real-world systems is
essential for building reliable monitoring tools.

o Implementing Celery scheduling highlighted the importance of timing precision and
asynchronous task management in automation.

o Testing and debugging AJAX-based checks improved our knowledge of real-time web
communication using JSON (RFC 8259).

o We learned that small configuration issues (like Celery intervals or SMTP credentials) can
significantly affect system reliability.

o Collaboration through AIORI's sprint process reflected how IETF-style teamwork and
documentation operate in real research environments.

e Open Source and Community Contributions

Project Contribution Status Link

Django-based

website monitoring https://github.com/
system Starc6254/DNinjaS-

WebCheck implementing HTTP Local Repository Website-Health-
(RFC 9110), ICMP Monitoring--AlORI-
(RFC 792), and SMTP 2-

(RFC 5321) standards

e Future Work

o Integrate with AIORI-IMN Framework: Connect WebCheck's monitoring engine with
the AIORI Internet Measurement Network to collect distributed uptime and latency data
across nodes.

o Enable Multi-Channel Alerts: Complete implementation of email, and SMS
notifications with verified SMTP and Twilio integration.

o Add Live Analytics: Link real monitoring data to the dashboard for live uptime graphs,
downtime history, and performance insights.

o Enhance Security & Protocol Coverage: Extend HTTPS and TLS (RFC 8446) validation,
add retry logic, and include WebSocket-based live push updates.

o Open Source Release: Prepare the codebase for public release under AIORI's GitHub,
inviting collaboration and contributions from the research community.

AIORI-2: Reporting and Standards Mapping

Team Name Institution Project Title Focus Area
Inte‘rnational Website Health Web.site.Health

DNinjas In?t|tute _of Monitor with Multi- Monitoring / HTTP -
Information Channel Alerts ICMP - 'I"LS - SMTP
Technology, Pune Integration

Date: 5/11/2025



https://github.com/Starc6254/DNinjaS-Website-Health-Monitoring--AIORI-2-

1. Standards Reference

RFC / Draft No.

Title / Area

Lifecycle Stage

How This Work
Relates

RFC 9110-9114

HTTP Semantics
and HTTP/1.1-3
Protocols

Internet Standard

Implements website
health checks and
response validation
using HTTP status

cndoc

RFC 792/ RFC 4443

Internet Control
Message Protocol
(ICMPv4/v6)

Internet Standard

Used for basic ping
and reachability
testing to detect
downtime.

The Transport Layer

Used for HTTPS
validation and

(JSON) Data
Interchange Format

Internet Standard

RFC 8446 Iiecurltyl(Tll_S) Internet Standard secure connection
rotocol v1.3 checks during
manitaring
The JavaScript Used in AJAX
j i responses for real-
REC 8259 Object Notation p

time frontend
communication

withniit nadgo

2. Impact on Standards Development

Question Response with Explanation

Yes. The project validates several existing RFCs including
RFC 9110-9114 (HTTP semantics and status codes), RFC
792 (ICMP reachability), and RFC 5321/5322 (SMTP email
delivery) by implementing them in a real monitoring system
that checks website health and notifies users when

Does this work support,
extend, or validate an existing
RFC?

Could it influence a new
Internet-Draft or update
sections of an RFC?

Potentially, yes. The monitoring logic and alert workflow
could contribute to discussions around Internet service
reliability metrics or automated notification standards in
IETF operations or measurement working groups.

Any feedback or data shared
with IETF WG mailing lists (e.g.,
DNSOP, SIDROPS, DPRIVE,
QuIC)?

No direct mailing list participation yet. However, results are
aligned with the interests of OPSAREA, HTTPBIS, and
EMAILCORE WGs, and can later be shared through AIORI’s
collaborative channels for feedback.

The next step is to prepare the monitoring dataset and logs
for sharing through the AIORI Internet Measurement
Platform (AIORI-IMN) and eventually contribute the
implementation details to AIORI’s open-source repository for
broader research use.

Planned next step (e.g., share
measurement dataset / open
PR/ draft text).




e References

RFC 9110-9114 — HTTP Semantics and HTTP/1.1-3 Protocols

RFC 792 / RFC 4443 — Internet Control Message Protocol (ICMPv4/v6)

RFC 8259 — The JavaScript Object Notation (JSON) Data Interchange Format

RFC 8446 — The Transport Layer Security (TLS) Protocol Version 1.3

RFC 5321 / RFC 5322 / RFC 8314 — Simple Mail Transfer Protocol (SMTP) and Message
Format

RFC 8030/ RFC 8292 / RFC 6455 -~ Web Push and WebSocket Protocols

AIORI Testbed Documentation: https:/aiori.in/testbed

IETF HTTPBIS Working Group: https://datatracker.ietf.org/wg/httpbis/

IETF OPSAREA Working Group: https://datatracker.ietf.org/wg/opsarea/
https:/doi.org/101093/nar/gkab396 Aviator a web service for monitoring availability of
web services

o JETIR2412359 http://www.jetir.org/

o https:/doi.org/10.22214/ijraset.2024.59855

e About the Authors

DNinjaS represents International Institute of Information Technology (Pune), part of the
AIORI-2 Hackathon (Nov 2025). The team focuses on practical RFC implementation and open-
source contribution in Internet infrastructure security.

o 0 0O o o

o 0O 0O o o

o Sarthak Dhamale: This project deepened my understanding of RFC-based monitoring
and how real-time alerts improve Internet reliability.

o Ayush Nakhale: | learned how protocols like HTTP and ICMP work together in detecting
downtime and ensuring seamless service availability.

e Contact
o Lead Author: Sarthak Dhamale
= Email: sarthak.s.dhamale@gmail.com
o Mentor: Prof. Bhagyashri Tanaji Thorat


https://aiori.in/testbed
https://datatracker.ietf.org/wg/httpbis/
https://datatracker.ietf.org/wg/opsarea/
https://doi.org/10.1093/nar/gkab396
http://www.jetir.org/
https://doi.org/10.22214/ijraset.2024.59855

