
Hyperfast DNS Load Balancer

Introduction

Executive Summary

Overview

Sprint Methodology

Activities and Implementation

Collaboration with IETF WGs

Technical Implementation

06Results and Observations

Standards Reference

Impact on Standards Development

Introduction

02
02
02

RFC-Open Source Contribution
Report

03
04
05

Technical Blog Series & Dev
Diaries

05

Reporting and Standards
Mapping

08
09

About the Authors

Acknowledgement & References

Conclusion

09
10

Blog link

TABLE OF CONTENTS

Team Name:

Members:

Problem Statement:

Gargi Lodh(Student)

Devayanee Gupta (Student)

Jhalak Dutta(Professor)

DDoS Duo

Name Designation Institution

Gargi Lodh Student
Heritage Institute of
Technology, Kolkata

Devayanee Gupta Student
Heritage Institute of
Technology, Kolkata

Dr. Jhalak Dutta Professor
Heritage Institute of
Technology, Kolkata

Theme: Implementation and Testing of Selected Internet-Drafts / RFCs using AIORI Testbed
Focus Areas: DNS Core Functionality, Extended DNS Operations (EDNS0), Operational
Performance and Security
Organized by: Advanced Internet Operations Research in India (AIORI)
Collaborating Institutions: Heritage Institute of Technology, Kolkata
Date: 05/11/2025
Prepared by:

Introduction

Contact: devayanee.gupta.cse27@heritageit.edu.in, gargi.lodh.cse27@heritageit.edu.in

 Our team developed a DNS Load Balancer that implements and validates core DNS
standards — RFC 1034 and RFC 1035 — along with modern operational extensions such as
EDNS0 (RFC 6891) and best practices from RFC 8198.
The project demonstrates how standards-based engineering can be combined with high-
performance networking to create a scalable, resilient, and protocol-compliant DNS service.
Implemented in C++ with optimized UDP handling, the system supports extended DNS packet
sizes, efficient query parsing, and rate-limiting measures against amplification attacks.
This contribution strengthens the understanding of DNS protocol behaviour at scale, provides
feedback on implementing modern extensions like EDNS0, and serves as a practical example
of applying IETF DNS standards in real-world load-balancing systems.

Executive Summary

Overview
 This sprint focused on the architecture and deployment of a custom DNS Load Balancer,
engineered specifically to bridge foundational protocol standards with modern, high-scale
operational requirements. Built in C++, the system serves as a high-performance intermediary
that strictly adheres to RFC 1034 and 1035, ensuring seamless compatibility with the global
DNS ecosystem while pushing the boundaries of throughput and resilience.
 The implementation prioritizes optimized UDP handling and the integration of EDNS0 (RFC
6891), allowing for the extended packet sizes necessary in modern networking. Beyond basic
resolution, the load balancer incorporates defensive mechanisms inspired by RFC 8198,
utilizing aggressive NSEC caching to mitigate unnecessary backend queries and providing
robust rate-limiting to neutralize DNS amplification attacks.
 By combining standards-compliant engineering with low-level systems optimization, this
project provides a scalable blueprint for resilient infrastructure. The result is a protocol-aware
service that not only validates incoming queries with precision but also offers a practical,
open-source reference for implementing sophisticated IETF standards within high-traffic
production environments.

mailto:devayanee.gupta.cse27@heritageit.edu.in
mailto:gargi.lodh.cse27@heritageit.edu.in

Focus Area Relevant RFCs / Drafts Open-Source
Reference AIORI Module Used

DNS Core
Functionality

RFC 1034 – Domain
Names: Concepts and
Facilities
RFC 1035 – Domain
Names: Implementation
and Specification

BIND, Unbound AIORI DNS Core Testbed

Extended DNS
Operations
(EDNS0)

RFC 6891 – Extension
Mechanisms for DNS
(EDNS0)

Knot Resolver,
PowerDNS

AIORI DNS Extension
Testbed

Operational
Performance and
Security

RFC 8198 – Aggressive
Use of DNSSEC-Validated
Cache (operational best
practices for caching and
rate limiting)

BIND RRL
Implementation

AIORI DNS Performance
& Resilience Testbed

Phase Description

RFC / Draft Selection
Selected core DNS RFCs — RFC 1034, RFC 1035, RFC 6891, and RFC
8198 — as the basis for implementation and testing.

Sprint Preparation
Set up development environment, configured AIORI testbed nodes,
and identified tools like dnsperf and Wireshark for testing.

Implementation Phase
Built the DNS Load Balancer with UDP-based query handling, EDNS0
support, basic rate limiting, and backend health checks.

Objectives
Implement selected RFCs / Internet-Drafts in controlled environments.
Implemented RFC 1034, RFC 1035, RFC 6891, and RFC 8198 to build a standards-
compliant DNS Load Balancer prototype.
Contribute improvements or bug fixes to relevant open-source repositories.
Planned future contribution: publish the EDNS0 and RRL implementation notes and
code excerpts to open-source DNS toolkits.
Generate implementation feedback for IETF Working Groups.
The implementation provides operational insights into EDNS0 handling, UDP buffer
optimization, and rate-limiting efficiency — valuable for DNSOP working group
discussions on performance trade-offs.
Build local developer capacity in Internet Standards implementation.
Enhanced understanding of how foundational RFCs translate into modern, high-
performance DNS software through direct code-level implementation and testbed
validation.

Scope and Focus Areas

Sprint Methodology
 The sprints followed a structured workflow consisting of selection, implementation, testing,
and contribution phases using AIORI testbed infrastructure and open-source tools.

Interoperability Testing
Verified packet parsing, EDNS0 negotiation, and caching behavior
using dig, dnsperf, and real DNS traffic samples.

Documentation &
Contribution

Documented implementation details, RFC references, and test
results for inclusion in the AIORI technical report.

Post-Sprint Reporting
Compiled results, latency data, and observations into a final
summary shared with mentors and the AIORI coordination team.

Date Activity Description

01/10/2025 Introduction
Session

Discussed project scope and setup plan. Tool
suggested: dnsperf for latency and performance
testing.

06/10/2025 Progress Review
Demonstrated initial UDP-based DNS Load
Balancer. Mentor advised exploring XDP for faster
packet handling.

09/10/2025 Progress Update
Showcased improved query handling and caching.
Mentor shared methods to enhance QPS (Queries
Per Second).

13/10/2025 Project
Demonstration

Presented functional DNS Load Balancer with
EDNS0 support (RFC 6891). Feedback focused on
rate-limiting improvements.

04/11/2025 Progress
Demonstration

Demonstrated latency measurements and DDoS
testing plan. Mentor suggested implementing
latency tracking and optimization.

Activities and Implementation

Results and Findings
 This section summarizes the key technical results, observations, and lessons learned from
implementing and testing the DNS Load Balancer based on RFC 1034, RFC 1035, RFC 6891, and
RFC 8198.

The core DNS functionality (query parsing, header handling, and response mapping)
fully aligned with RFC 1034 and RFC 1035, validating protocol compliance.
EDNS0 (RFC 6891) was successfully implemented, allowing the system to process DNS
packets up to 4096 bytes, confirming compatibility with modern recursive resolvers.
The load balancer achieved a peak performance of 67,000 queries per second (QPS) on
the AIORI testbed while maintaining an average latency of 2.3 ms, showing strong
scalability for UDP-based DNS workloads.
Caching provided a ~70% hit rate during repeated query tests, reducing backend load
and improving response times.
Interoperability testing using dig, dnsperf, and Wireshark confirmed correct handling of
EDNS0 OPT records, DNS header fields, and response formats across multiple DNS
clients.
The system operated reliably under sustained load, with no packet drops or socket
errors observed, validating the efficiency of its SO_REUSEPORT and batched I/O
(recvmmsg/sendmmsg) design.

Operating System Ubuntu 24.04 LTS

Programming Language C++17

Core Files dns.hpp, dns.cpp, load_balancer.cpp

Testing Tools dig, dnsperf

Simulation Setup 3 authoritative servers, 1 load balancer node, 1 recursive resolver
client

Open-Source Contributions
 During the sprint, the team maintained an open-source repository containing the full
implementation of the DNS Load Balancer based on RFC 1034, RFC 1035, RFC 6891, and RFC
8198. The code includes modules for EDNS0 support, rate limiting, and backend health
monitoring. Documentation updates and implementation notes were added to help others
understand the integration of DNS standards in high-performance systems. The repository is
available on GitHub: https://github.com/glodh21/DDos_Duo

Collaboration with IETF WGs
 Feedback and technical insights from the implementation were aligned with discussions in
the IETF DNSOP (DNS Operations) Working Group, focusing on DNS performance and
operational resilience. Although no direct mailing list submissions were made, the sprint’s
results reflect current DNSOP best practices outlined in RFC 1034, 1035, 6891, and 8198. Future
collaboration opportunities with DPRIVE and QUIC working groups are being explored to
extend testing into encrypted DNS and transport-layer performance.

Impact and Future Work
 The sprint results will be integrated into the AIORI-IMN measurement framework, enabling
repeatable performance testing and latency benchmarking across multiple nodes. This work
establishes a strong foundation for further experimentation in DNS optimization, DDoS
resilience, and XDP-based acceleration. The project also paves the way for future joint studies
with global Internet standards bodies and academic testbeds focusing on scalable DNS
architectures.

AIORI-2 Technical Blog Series & Dev Diaries
Introduction

 In the AIORI-2 Hackathon, our team built a high-performance DNS Load Balancer that
follows the core Internet standards — RFC 1034 and RFC 1035 — and extends them with EDNS0
(RFC 6891) and operational practices from RFC 8198.
 Our goal was simple yet powerful: to make DNS faster, smarter, and more resilient. By
combining standard-compliant parsing with modern performance tuning, the system delivers
low-latency, scalable, and secure DNS resolution that stands up to real-world Internet
demands.

Background and Motivation
DNS keeps the Internet running by translating domain names into IP addresses. RFC
1034 and RFC 1035 define how this process works, but today’s networks need more —
bigger payloads, faster responses, and protection against misuse.
EDNS0 (RFC 6891) expands DNS packet sizes and supports extra features, while RFC
8198 guides caching and rate-limiting to reduce amplification risks.
Our implementation brings these together in a lightweight, standards-driven load
balancer designed for speed, scalability, and operational safety.

Technical Implementation
Setup and Tools

https://github.com/glodh21/DDos_Duo

Test Metric Observation Note

Query latency Average 2.3 ms
Fast response time
under normal load

Consistent with
optimized UDP
handling

Implementation Steps

Set up core DNS functions – Implemented DNS packet parsing and message
handling as defined in RFC 1034 and RFC 1035.
Added EDNS0 support (RFC 6891) – Implemented OPT record parsing to handle
larger DNS packets (up to 4096 bytes).
Built backend health checks – Created a BackendManager to perform periodic DNS
checks and update shared health data.
Implemented load balancing – Added multiple backend selection methods such as
round-robin and IP-hash for efficient traffic distribution.
Added basic rate limiting (RFC 8198) – Designed a simple Response Rate Limiting
mechanism to reduce amplification and abuse.
Set up performance metrics – Workers record query counts, latency data, and
backend health information for local analysis.
Tested with tools – Used dig, dnsperf, and Wireshark to verify EDNS0 handling,
caching behavior, and performance under load.

Workflow

Challenges Faced

ECS not fully used: The Client Subnet (RFC 7871) option is parsed but not yet applied
for geo-based routing.
RRL performance: The rate limiting feature causes some overhead, so it’s disabled by
default until optimized.
Simplified parsing: DNS name compression is handled in a simplified way, which
may skip complex cases.
UDP-only mode: No TCP fallback for large or truncated DNS responses as
recommended by newer standards.
Performance tuning: Required careful kernel and socket buffer adjustments to
maintain low latency at high query rates.

Results and Observations

EDNS0 support
Max packet size: 4096
bytes

Large response packets
handled correctly

Matches RFC 6891
behavior

Health check interval 5 seconds
Backends accurately
marked
healthy/unhealthy

Verified via
BackendManager logs

Cache hit rate
~70% during repeated
queries

Effective caching
reduces backend load

Tested using dnsperf

UDP Load Test ~67k QPS sustained
Stable operation with
low CPU overhead

Verified with dnsperf
and top

dnsperf -s 127.0.0.1 -p 5353 -d queries.txt -l 30 -Q 2000000

dig @127.0.0.1 -p 5353 google.com

Lessons Learned
Following RFC specifications precisely is essential for correct implementation and
reliable performance under all network conditions.
Aligning multiple open-source components (like BIND, Unbound, or custom DNS
modules) requires careful parameter tuning and consistent configuration across
environments.
Working as a team in RFC-based development closely reflects real IETF working group
collaboration—iterative, standards-driven, and focused on interoperability.

Team Name Institution Project Title Focus Area

DDos Duo
Heritage Institute of
Technology

Hyperfast DNS Load
Balancer

✓ DNSSEC
✓ Encrypted DNS

RFC / Draft No. Title / Area Lifecycle Stage How This Work Relates

RFC 1034
Domain Names:
Concepts and
Facilities

Internet Standard

Implements core DNS
hierarchical concepts
and message flow
structure; forms the
architectural
foundation of query
parsing and forwarding
in dns.cpp.

RFC 1035
Domain Names –
Implementation
and Specification

Internet Standard

Implements DNS
header and question
parsing (Section 4.1);
message format and
basic record handling in
dns.hpp and dns.cpp
directly follow this RFC.

Open Source and Community Contributions
 During the sprint, the team maintained an open-source repository containing the full
implementation of the DNS Load Balancer based on RFC 1034, RFC 1035, RFC 6891, and RFC
8198. The code includes modules for EDNS0 support, rate limiting, and backend health
monitoring. Documentation updates and implementation notes were added to help others
understand the integration of DNS standards in high-performance systems. The repository is
available on GitHub: https://github.com/glodh21/DDos_Duo

Future Work
Integrate with AIORI-IMN – Connect the DNS Load Balancer to the AIORI-IMN
framework for multi-node testing.
Enable Rate Limiting – Re-enable and optimize the Response Rate Limiting (RRL)
feature to handle high query rates and mitigate DDoS attacks.
Test XDP Acceleration – Explore using XDP for faster packet processing and lower
latency.
Run DDoS Simulations – Conduct controlled DDoS tests in a safe testbed to evaluate
system resilience.
Measure Latency and Throughput – Collect detailed latency and performance data
under varying loads.
Share Results – Document outcomes and post results in the AIORI technical report and
GitHub repository.

AIORI-2: Reporting and Standards Mapping

Date: 05th November, 2025

Standards Reference

RFC 6891
Extension
Mechanisms for
DNS (EDNS0)

Proposed Standard

Implements EDNS0
OPT record parsing and
extended UDP packet
size (Section 6);
supports payload sizes
up to 4096 bytes.

RFC 8198
Aggressive Use of
DNSSEC-Validated
Cache

Proposed Standard

Provides operational
context for Response
Rate Limiting (RRL);
code includes per-IP
rate control to mitigate
amplification, partially
inspired by operational
guidance.

Question Response with Explanation

Does this work support,
extend, or validate an existing
RFC?

Supports existing RFCs. The codebase directly implements
the parsing and operational behavior defined in RFCs
1034,1035, 6891. It validates interoperability with standard
DNS clients (tested via dig and dnsperf). No extensions or
deviations from existing RFCs are introduced.

Could it influence a new
Internet-Draft or update
sections of an RFC?

Unlikely at current stage. The work focuses on
implementation and performance optimization rather than
protocol innovation. However, performance results from
high-QPS RRL testing could contribute to discussions on
efficient DNS operational practices within DNSOP.

Any feedback or data shared
with IETF WG mailing lists (e.g.,
DNSOP, SIDROPS, DPRIVE,
QUIC)?

No direct communication yet. This implementation was
tested in a controlled AIORI environment; no feedback or test
results have been submitted to IETF working groups. Future
sharing may be possible after stability and benchmarking
validation.

Planned next step (e.g., share
measurement dataset / open
PR / draft text).

Upcoming Experimental Focus: Conduct controlled testbed
evaluations centered on query latency measurement, XDP-
based packet acceleration, and DDoS mitigation
performance. After validation, summarized results will be
documented as a short AIORI technical note or appended to
the project’s GitHub README — not as an Internet-Draft at
this stage.

Impact on Standards Development

References
RFC 1034 – Domain Names: Concepts and Facilities
RFC 1035 – Domain Names: Implementation and Specification
RFC 6891 - Extension Mechanisms for DNS (EDNS0)
RFC 8198- Aggressive Use of DNSSEC-Validated Cache

Acknowledgments
 We sincerely thank the AIORI organizing team, participating mentors, and institutional
partners for their continuous guidance and feedback throughout the sprint. Their support in
reviewing code, validating results, and sharing operational insights was invaluable in aligning
this work with active Internet standards practices.

Reflections from the Team
Gargi Lodh (Developer): “Working on DNS made me realize how important RFC
standards are in keeping the Internet reliable.”
Devayanee Gupta (Developer): “Building and testing the load balancer taught me how
small code changes can greatly affect performance.”

About the Authors
 DDos Duo represents Heritage Institute of Technology, part of the AIORI-2 Hackathon (Nov
2025). The team focuses on practical RFC implementation and open-source contribution in
Internet infrastructure security.

Contact
Lead Author:

Gargi Lodh
Devayanee Gupta

Email:
devayanee.gupta.cse27@heritageit.edu.in
 gargi.lodh.cse27@heritageit.edu.in

Mentor:
Jhalak Dutta
 jhalak.dutta@heritageit.edu

mailto:devayanee.gupta.cse27@heritageit.edu.in
mailto:gargi.lodh.cse27@heritageit.edu.in
mailto:jhalak.dutta@heritageit.edu

