2025

@

AIORI-2

GRAND FINR

LE

L'-‘ "9

IEEE 52 e G-
ALao B B S ICANN
i It : s ?-"

| . S/ S e — T E——————r

Team Name: _

Members: . Gargi Lodh(student)
- Devayanee Gupta (Student)
 Jhalak butta(Professor)

Problem statement:Hyperfast DNS Load Balancer

TABLE OF CONTENTS

Introduction Reporting and Standards
Mapping

Introduction 02 Standards Reference 08

Executive Summary 02 Impact on Standards Development 09

Overview 02

RFC-Open Source Contribution Conclusion

Report

Sprint Methodology 03 About the Authors 09

Activities and Implementation 04 Acknowledgement & References 10

Collaboration with IETF WGs 05

Technical Blog Series & Dev

Diaries
Technical Implementation 05
Results and Observations 06

Blog Tink




Introduction

o Theme: Implementation and Testing of Selected Internet-Drafts / RFCs using AIORI Testbed

e Focus Areas: DNS Core Functionality, Extended DNS Operations (EDNSO), Operational
Performance and Security

« Organized by: Advanced Internet Operations Research in India (AIORI)

« Collaborating Institutions: Heritage Institute of Technology, Kolkata

« Date: 05/11/2025

e Prepared by:

Name Designation Institution
Gargi Lodh Student Heritage Institute of
Technology, Kolkata
Devayanee Gupta Student Heritage Institute of
Technology, Kolkata
Dr. Jhalak Dutta Professor Heritage Institute of

Technology, Kolkata

Contact: devayanee.gupta.cse27@heritageit.edu.in, gargilodh.cse27@heritageit.edu.in

« Executive Summary

Our team developed a DNS Load Balancer that implements and validates core DNS
standards — RFC 1034 and RFC 1035 — along with modern operational extensions such as
EDNSO (RFC 6891) and best practices fromm RFC 8198.

The project demonstrates how standards-based engineering can be combined with high-
performance networking to create a scalable, resilient, and protocol-compliant DNS service.
Implemented in C++ with optimized UDP handling, the system supports extended DNS packet
sizes, efficient query parsing, and rate-limiting measures against amplification attacks.

This contribution strengthens the understanding of DNS protocol behaviour at scale, provides
feedback on implementing modern extensions like EDNSO, and serves as a practical example
of applying IETF DNS standards in real-world load-balancing systems.

e« Overview

This sprint focused on the architecture and deployment of a custorm DNS Load Balancer,
engineered specifically to bridge foundational protocol standards with modern, high-scale
operational requirements. Built in C++, the system serves as a high-performance intermediary
that strictly adheres to RFC 1034 and 1035, ensuring seamless compatibility with the global
DNS ecosystem while pushing the boundaries of throughput and resilience.

The implementation prioritizes optimized UDP handling and the integration of EDNSO (RFC
6891), allowing for the extended packet sizes necessary in modern networking. Beyond basic
resolution, the load balancer incorporates defensive mechanisms inspired by RFC 8198,
utilizing aggressive NSEC caching to mitigate unnecessary backend queries and providing
robust rate-limiting to neutralize DNS amplification attacks.

By combining standards-compliant engineering with low-level systems optimization, this
project provides a scalable blueprint for resilient infrastructure. The result is a protocol-aware
service that not only validates incoming queries with precision but also offers a practical,
open-source reference for implementing sophisticated |IETF standards within high-traffic
production environments.


mailto:devayanee.gupta.cse27@heritageit.edu.in
mailto:gargi.lodh.cse27@heritageit.edu.in

o Objectives

o

Implement selected RFCs / Internet-Drafts in controlled environments.

Implemented RFC 1034, RFC 1035, RFC 6891, and RFC 8198 to build a standards-
compliant DNS Load Balancer prototype.

Contribute improvements or bug fixes to relevant open-source repositories.

Planned future contribution: publish the EDNSO and RRL implementation notes and
code excerpts to open-source DNS toolkits.

Generate implementation feedback for IETF Working Groups.

The implementation provides operational insights into EDNSO handling, UDP buffer
optimization, and rate-limiting efficiency — valuable for DNSOP working group
discussions on performance trade-offs.

Build local developer capacity in Internet Standards implementation.

Enhanced understanding of how foundational RFCs translate into modern, high-
performance DNS software through direct code-level implementation and testbed
validation.

» Scope and Focus Areas

Focus Area Relevant RFCs / Drafts

Open-Source

AIORI Module Used
Reference

DNS Core Facilities
Functionality RFC 1035 - Domain

RFC 1034 - Domain
Names: Concepts and

BIND, Unbound AIORI DNS Core Testbed

Names: Implementation
and Specification

Extended DNS RFC 6891 - Extension

Operations Mechanisms for DNS Eg&tefgfqoslver’ ?ég,fble%’\ls Extension
(EDNSO) (EDNSO)

RFC 8198 - Aggressive
Operational Use ofDNSSEQ-Val/dated BIND RRL AIORI DNS Performance
Performance and Cache (operational best . -

. ; . Implementation | & Resilience Testbed

Security practices for caching and

rate limiting)

e Sprint Methodology

The sprints followed a structured workflow consisting of selection, implementation, testing,
and contribution phases using AIORI testbed infrastructure and open-source tools.

Phase Description

RFC / Draft Selection

Selected core DNS RFCs — RFC 1034, RFC 1035, RFC 6891, and RFC
8198 — as the basis for implementation and testing.

Sprint Preparation

Set up development environment, configured AIORI testbed nodes,
and identified tools like dnsperf and Wireshark for testing.

Implementation Phase

Built the DNS Load Balancer with UDP-based query handling, EDNSO
support, basic rate limiting, and backend health checks.




Interoperability Testing

Verified packet parsing, EDNSO negotiation, and caching behavior
using dig, dnsperf, and real DNS traffic samples.

Documentation & Documented implementation details, RFC references, and test
Contribution results for inclusion in the AIORI technical report.

Post-Sprint Reporting

Compiled results, latency data, and observations into a final
summary shared with mentors and the AIORI coordination team.

e Activities and Implementation

Date Activity Description
Introduction Discussed project scope and setup plan. Tool
01/10/2025 Sessi suggested: dnsperf for latency and performance
ession >
testing.
Demonstrated initial UDP-based DNS Load
06/10/2025 Progress Review Balancer. Mentor advised exploring XDP for faster
packet handling.
Showcased improved query handling and caching.
09/10/2025 Progress Update Mentor shared methods to enhance QPS (Queries
Per Second).
Proiect Presented functional DNS Load Balancer with
13/10/2025 5 ) . EDNSO support (RFC 6891). Feedback focused on
emonstration L
rate-limiting improvements.
Progress Demonstrated latency measurements and DDoS
04/11/2025 & . testing plan. Mentor suggested implementing
Demonstration . o
latency tracking and optimization.

Results and Findings

This section summarizes the key technical results, observations, and lessons learned from
implementing and testing the DNS Load Balancer based on RFC 1034, RFC 1035, RFC 6891, and
RFC 8198.

o

The core DNS functionality (query parsing, header handling, and response mapping)
fully aligned with RFC 1034 and RFC 1035, validating protocol compliance.

EDNSO (RFC 6891) was successfully implemented, allowing the system to process DNS
packets up to 4096 bytes, confirming compatibility with modern recursive resolvers.

The load balancer achieved a peak performance of 67,000 queries per second (QPS) on
the AIORI testbed while maintaining an average latency of 2.3 ms, showing strong
scalability for UDP-based DNS workloads.

Caching provided a ~70% hit rate during repeated query tests, reducing backend load
and improving response times.

Interoperability testing using dig, dnsperf, and Wireshark confirmed correct handling of
EDNSO OPT records, DNS header fields, and response formats across multiple DNS
clients.

The system operated reliably under sustained load, with no packet drops or socket
errors observed, validating the efficiency of its SO_REUSEPORT and batched /O
(recvmmsg/sendmmsg) design.



e Open-Source Contributions

During the sprint, the team maintained an open-source repository containing the full
implementation of the DNS Load Balancer based on RFC 1034, RFC 1035, RFC 6891, and RFC
8198. The code includes modules for EDNSO support, rate limiting, and backend health
monitoring. Documentation updates and implementation notes were added to help others
understand the integration of DNS standards in high-performance systems. The repository is
available on GitHub: https:/github.com/glodh21/DDos_Duo

e Collaboration with IETF WGs

Feedback and technical insights from the implementation were aligned with discussions in
the IETF DNSOP (DNS Operations) Working Group, focusing on DNS performance and
operational resilience. Although no direct mailing list submissions were made, the sprint’s
results reflect current DNSOP best practices outlined in RFC 1034, 1035, 6891, and 8198. Future
collaboration opportunities with DPRIVE and QUIC working groups are being explored to
extend testing into encrypted DNS and transport-layer performance.

e Impact and Future Work

The sprint results will be integrated into the AIORI-IMN measurement framework, enabling
repeatable performance testing and latency benchmarking across multiple nodes. This work
establishes a strong foundation for further experimentation in DNS optimization, DDoS
resilience, and XDP-based acceleration. The project also paves the way for future joint studies
with global Internet standards bodies and academic testbeds focusing on scalable DNS
architectures.

AIORI-2 Technical Blog Series & Dev Diaries

¢ Introduction

In the AIORI-2 Hackathon, our team built a high-performance DNS Load Balancer that
follows the core Internet standards — RFC 1034 and RFC 1035 — and extends them with EDNSO
(RFC 6891) and operational practices from RFC 8198.

Our goal was simple yet powerful: to make DNS faster, smarter, and more resilient. By
combining standard-compliant parsing with modern performance tuning, the system delivers
low-latency, scalable, and secure DNS resolution that stands up to real-world Internet
demandes.

« Background and Motivation

o DNS keeps the Internet running by translating domain names into IP addresses. RFC
1034 and RFC 1035 define how this process works, but today’'s networks need more —
bigger payloads, faster responses, and protection against misuse.

o EDNSO (RFC 6891) expands DNS packet sizes and supports extra features, while RFC
8198 guides caching and rate-limiting to reduce amplification risks.

o Our implementation brings these together in a lightweight, standards-driven load
balancer designed for speed, scalability, and operational safety.

e Technical Implementation
o Setup and Tools

Operating System Ubuntu 24.04 LTS

Programming Language C++17

Core Files dns.hpp, dns.cpp, load_balancer.cpp
Testing Tools dig, dnsperf
Simulation Setup 3 authoritative servers, 1 load balancer node, 1 recursive resolver

client


https://github.com/glodh21/DDos_Duo

o Implementation Steps

Set up core DNS functions — Implemented DNS packet parsing and message
handling as defined in RFC 1034 and RFC 1035.

Added EDNSO support (RFC 6891) — Implemented OPT record parsing to handle
larger DNS packets (up to 4096 bytes).

Built backend health checks — Created a BackendManager to perform periodic DNS
checks and update shared health data.

Implemented load balancing — Added multiple backend selection methods such as
round-robin and IP-hash for efficient traffic distribution.

Added basic rate limiting (RFC 8198) — Designed a simple Response Rate Limiting
mechanism to reduce amplification and abuse.

Set up performance metrics — Workers record query counts, latency data, and
backend health information for local analysis.

Tested with tools — Used dig, dnsperf, and Wireshark to verify EDNSO handling,
caching behavior, and performance under load.

o Workflow

"L DNS Load Balancer RFC-Based Workflow

EDeeSa OFY
]
RFC B&91

o Challenges Faced

ECS not fully used: The Client Subnet (RFC 7871) option is parsed but not yet applied
for geo-based routing.

RRL performance: The rate limiting feature causes some overhead, so it's disabled by
default until optimized.

Simplified parsing: DNS name compression is handled in a simplified way, which
may skip complex cases.

UDP-only mode: No TCP fallback for large or truncated DNS responses as
recommended by newer standards.

Performance tuning: Required careful kernel and socket buffer adjustments to
maintain low latency at high query rates.

¢ Results and Observations

Test Metric Observation Note
Fast response time Consistent with
Query latency Average 2.3 ms optimized UDP
under normal load .
handling




EDNSO support

Max packet size: 4096
bytes

Large response packets
handled correctly

Matches RFC 6891
behavior

Health check interval

5 seconds

Backends accurately
marked
healthy/unhealthy

Verified via
BackendManager logs

Cache hit rate

~70% during repeated
queries

Effective caching
reduces backend load

Tested using dnsperf

UDP Load Test

~67k QPS sustained

Stable operation with
low CPU overhead

Verified with dnsperf
and top

dnsperf -s127.0.0.1 -p 5353 -d queries.txt -1 30 -Q 2000000

Statistics:

2014512

sent:

Queries
Queries
Queries

completed:
lost:

Response codes:
Average packe
Run time (s):
Queries per second:

Average Latency (s):

Latency StdDev (s):

size:

2014061 (99.98%)
451 (@.02%)

NOERROR 2014061 (100.06%)
request 32, response 90
30.000172

67134.981759

0.000315 (min ©.900012, max 2.852867)

0.885136

dig @127.0.0.1 -p 5353 google.com

e Lessons Learned

o Following RFC specifications precisely is essential for correct implementation and
reliable performance under all network conditions.
o Aligning multiple open-source components (like BIND, Unbound, or custom DNS

modules)
environments.

requires careful

parameter tuning and consistent configuration across

o Working as a team in RFC-based development closely reflects real IETF working group
collaboration—iterative, standards-driven, and focused on interoperability.




e Open Source and Community Contributions

During the sprint, the team maintained an open-source repository containing the full
implementation of the DNS Load Balancer based on RFC 1034, RFC 1035, RFC 6891, and RFC
8198. The code includes modules for EDNSO support, rate limiting, and backend health
monitoring. Documentation updates and implementation notes were added to help others
understand the integration of DNS standards in high-performance systems. The repository is
available on GitHub: https://github.com/glodh21/DDos_Duo

e Future Work

o

Integrate with AIORI-IMN — Connect the DNS Load Balancer to the AIORI-IMN
framework for multi-node testing.

Enable Rate Limiting — Re-enable and optimize the Response Rate Limiting (RRL)
feature to handle high query rates and mitigate DDoS attacks.

Test XDP Acceleration — Explore using XDP for faster packet processing and lower
latency.

Run DDoS Simulations — Conduct controlled DDoS tests in a safe testbed to evaluate
system resilience.

Measure Latency and Throughput — Collect detailed latency and performance data
under varying loads.

Share Results — Document outcomes and post results in the AIORI technical report and
GitHub repository.

AIORI-2: Reporting and Standards Mapping

Team Name Institution Project Title Focus Area

DDos Duo

Heritage Institute of Hyperfast DNS Load v DNSSEC
Technology Balancer v Encrypted DNS

Date: O5th November, 2025

o Standards Reference

RFC / Draft No. Title / Area Lifecycle Stage How This Work Relates

Implements core DNS
hierarchical concepts

Domain Names: and message flow
RFC 1034 Concepts and Internet Standard Struc;tu re; forms the
Facilities architectural

foundation of query
parsing and forwarding
in dns.cpp.

Implements DNS
header and question

Domain Names - parsing (Section 4.1);
RFC 1035 Implementation Internet Standard message format and
and Specification basic record handling in

dns.hpp and dns.cpp
directly follow this RFC.




Implements EDNSO
OPT record parsing and

Extension
RFC 6891 Mechanisms for Proposed Standard gi);??sdeeciigr?g)md(et
DNS (EDNSO) ’

supports payload sizes
up to 4096 bytes.

Provides operational
context for Response
Rate Limiting (RRL);
code includes per-IP
rate control to mitigate
amplification, partially
inspired by operational
guidance.

Aggressive Use of
RFC 8198 DNSSEC-Validated Proposed Standard
Cache

+ Impact on Standards Development

Question Response with Explanation

Supports existing RFCs. The codebase directly implements

Does this work support, the parsing and operational behavior defined in RFCs
extend, or validate an existing | 1034,1035, 6891. It validates interoperability with standard
RFC? DNS clients (tested via dig and dnsperf). No extensions or

deviations from existing RFCs are introduced.

Unlikely at current stage. The work focuses on

Could it influence a new implementation and performance optimization rather than
Internet-Draft or update protocol innovation. However, performance results from
sections of an REC? high-QPS RRL testing could contribute to discussions on

efficient DNS operational practices within DNSOP.

Any feedback or data shared No direct communication yet. This implementation was
with IETF WG mailing lists (e.g., tested in a controlled AI_ORI environment;' no feedback or test
DNSOP. SIDROPS. DPRIVE results have been submitted to IETF working groups. Future

’ ! ’ sharing may be possible after stability and benchmarking
QuIC)? validation.

Upcoming Experimental Focus: Conduct controlled testbed
evaluations centered on query latency measurement, XDP-
Planned next step (e.g., share | pased packet acceleration, and DDoS mitigation

measurement dataset / open performance. After validation, summarized results will be

PR / draft text). documented as a short AIORI technical note or appended to
the project’s GitHub README — not as an Internet-Draft at
this stage.

e References

o RFC 1034 - Domain Names: Concepts and Facilities

o RFC1035 - Domain Names: Implementation and Specification
o RFC 6891 - Extension Mechanisms for DNS (EDNSO)

o RFC 8198- Aggressive Use of DNSSEC-Validated Cache

o Acknowledgments

We sincerely thank the AIORI organizing team, participating mentors, and institutional
partners for their continuous guidance and feedback throughout the sprint. Their support in
reviewing code, validating results, and sharing operational insights was invaluable in aligning
this work with active Internet standards practices.



e Reflections from the Team

o Gargi Lodh (Developer): “Working on DNS made me realize how important RFC
standards are in keeping the Internet reliable.”

o Devayanee Gupta (Developer): “Building and testing the load balancer taught me how
small code changes can greatly affect performance.”

e About the Authors

DDos Duo represents Heritage Institute of Technology, part of the AIORI-2 Hackathon (Nov
2025). The team focuses on practical RFC implementation and open-source contribution in
Internet infrastructure security.

e Contact

Lead Author:
o Gargi Lodh
o Devayanee Gupta
Email:
o devayanee.gupta.cse27@heritageit.edu.in
o gargilodh.cse27@heritageit.edu.in
Mentor:
o Jhalak Dutta
o jhalak.dutta@heritageit.edu



mailto:devayanee.gupta.cse27@heritageit.edu.in
mailto:gargi.lodh.cse27@heritageit.edu.in
mailto:jhalak.dutta@heritageit.edu

