

Team Name: **Code Crafters**

Members:

- Amanpreet Singh Gandhi (Student)
- Anjika Bahl (Student)
- Dr. Mahamuda Sultana (Professor)

Problem Statement: Post-Quantum DNSSEC Testbed under a Delegated .IN Domain

TABLE OF CONTENTS

Introduction		Reporting and Standards Mapping	
Introduction	02	Standards Reference	05
Executive Summary	02	Impact on Standards Development	05
Overview	02		
RFC-Open Source Contribution Report		Conclusion	
Sprint Methodology	03	About the Authors	06
Activities and Implementation	03	Acknowledgement & References	06
Collaboration with IETF WGs	04		
Technical Blog Series & Dev Diaries			
Technical Implementation	04		
Results and Observations	04		

[Blog Link](#)

Introduction

- **Theme:** Post-Quantum Cryptography (PQC) in DNSSEC Infrastructure
- **Focus Areas:** DNSSEC – Quantum-Resistant Key Algorithms
- **Organized by:** Advanced Internet Operations Research in India (AIORI)
- **Collaborating Institutions:** Guru Nanak Institute of Technology, Kolkata(GNIT)
- **Date:** 05/11/2025
- **Prepared by:**

Name	Designation	Institution
Amanpreet Singh Gandhi	Student	Guru Nanak Institute of Technology, Kolkata
Anjika Bahl	Student	Guru Nanak Institute of Technology, Kolkata
Dr. Mahamuda Sultana	Professor	Guru Nanak Institute of Technology, Kolkata

Contact: amanfromgnit@gmail.com

- **Executive Summary**

This sprint implemented a unified benchmarking framework to evaluate the performance of post-quantum cryptographic algorithms (SQLsign, Falcon512, Dilithium2, and SPHINCS+) within DNSSEC signing and validation workflows on the PowerDNS platform. Using containerized environments, the benchmark measured query latency, response size, and key/signature length metrics, contributing valuable data for PQC integration feasibility in Internet DNS infrastructure.

- **Overview**

This sprint successfully established a unified benchmarking framework designed to stress-test the viability of Post-Quantum Cryptography (PQC) within the critical infrastructure of DNSSEC. By integrating cutting-edge algorithms—specifically SQLsign, Falcon512, Dilithium2, and SPHINCS+—into the PowerDNS ecosystem, we moved beyond theoretical security to practical performance analysis.

The methodology relied on a high-fidelity, containerized testbed managed via Podman, ensuring environment parity and reproducible results. Our primary focus was quantifying the "quantum-readiness" of DNSSEC workflows by measuring three critical vectors: query latency, response payload size, and cryptographic overhead (key/signature lengths).

The findings provide a data-driven foundation for navigating the trade-offs between signature size and computational speed—a core challenge defined in RFC 8624 and emerging PQC drafts. By automating the data logging and metric aggregation phases, we have produced a transparent, open-source-aligned research tool that evaluates how these algorithms behave under real-world DNS resolution constraints, directly informing future transitions to quantum-resistant internet protocols.

• Objectives

- Integrate and benchmark PQC algorithms under DNSSEC (RFC 4033–4035, RFC 8624).
- Evaluate DNS response behavior, latency, and signature overhead with PQC-based signing.
- Automate testbed setup using container orchestration (Podman).
- Contribute reproducible benchmarking scripts to open-source DNSSEC research.

• Scope and Focus Areas

Focus Area	Relevant RFCs / Drafts	Open Source Reference	AIORI Module Used
DNSSEC (with PQC extensions)	RFC 4033–4035, RFC 8624, draft-ietf-lamps-pq-hybrid-sigs	PowerDNS, BIND Test Environments	

• Sprint Methodology

- **Workflow:**
 - RFC & Algorithm Selection (PQC for DNSSEC)
 - Environment Setup via Container Automation (Podman)
 - Implementation and Query Benchmarking
 - Data Logging and Metric Aggregation
 - Open Source Documentation and Report Submission

• Activities and Implementation

Date	Activity	Description	Output / Repository
01/11/2025	Sprint 1: PQC Integration	Implemented SQIsign, Falcon512, Dilithium2, SPHINCS+ into PowerDNS configuration files	[GitHub Repo Link]
02/11/2025	Sprint 2: Automated Benchmark	Automated container builds, DNSSEC signing, and query latency measurement	[GitHub Repo Link]
03/11/2025	Sprint 3: Result Aggregation	Generated latency, key-size, and response metrics in CSV and TXT reports	[GitHub Repo Link]

• Results and Findings

- Average DNS query times increased moderately (5–15%) with PQC-enabled keys.
- SPHINCS+ exhibited the largest signature size (~40–50 KB), impacting response size.
- Falcon512 and Dilithium2 provided the best trade-off between key size and latency.
- Podman-based isolation proved effective for reproducible DNSSEC test environments.

• Open Source Contributions

- No upstream open-source contributions were made during this sprint.
- However, all benchmarking scripts and configurations have been prepared for future release under the AIORI open repository once validation and review are complete.

• Collaboration with IETF WGs

- No direct collaboration or communication with IETF Working Groups took place during this sprint.
- However, our work aligns with ongoing discussions in DNSOP and LAMPS related to post-quantum DNSSEC, and the team intends to share findings in future AIORI-IETF outreach sessions.

• Impact and Future Work

This work demonstrates practical PQC deployment viability within DNSSEC and provides baseline data for hybrid PQC-RSA signing. Future work includes:

- Integration into AIORI-IMN PQC module.
- Extending tests to PQ-hybrid key exchanges (RFC 9555 drafts).
- Publishing results as an Internet-Draft.

Technical Blog Series & Dev Diary

• Lead Paragraph

In the AIORI-2 Hackathon, our team benchmarked post-quantum digital signature algorithms within DNSSEC to assess operational overhead and interoperability using the AIORI Secure DNS Testbed.

• Background and Motivation

As quantum threats emerge, DNSSEC's RSA and ECDSA keys will become vulnerable. We explored replacing them with post-quantum algorithms (Falcon, Dilithium, SPHINCS+) and tested their performance using containerized PowerDNS instances.

• Technical Implementation

◦ Setup and Tools:

- OS: Ubuntu 24.04 LTS
- Software: PowerDNS (ghcr.io/sidn/pqc-auth-powerdns), Podman, dig, lsof
- Measurement Tools: dig, awk, Wireshark, CSV log parser

◦ Implementation Steps:

- Automated Dockerfile creation for each PQC algorithm.
- Configured PowerDNS with default-ksk-algorithm and default-zsk-algorithm.
- Launched isolated containers and queried DNSKEY/A/NS records.
- Collected query latency, response sizes, and base64 key lengths.
- Exported aggregated results in .txt and .csv format.

◦ Challenges Faced:

- Some containers failed on initial build due to missing zone rectification.
- Signature parsing for large SPHINCS+ records required optimized buffer handling.
- Port conflicts during multiple runs required dynamic cleanup scripts.

• Results and Observations

Test	Metric	Observation	Note
Falcon512	Avg Query Time	8–12 ms	Stable response
Dilithium2	Avg Query Time	10–15 ms	Balanced key/signature size
SPHINCS+	Response Size	40–50 KB	Very large signature overhead
SQLsign	Build Time	~45s	Smallest base64 key size

• Lessons Learned

- PQC algorithms impose significant DNS payload size increases.
- Automated containerization ensures reproducibility.
- Hybrid approaches (PQC + classical) are operationally feasible.

• Open Source and Community Contributions

- No upstream open-source contributions were made during this sprint.
- However, all benchmarking scripts and configurations have been prepared for future release under the AIORI open repository once validation and review are complete.

• Future Work

- Extend tests to hybrid PQC-RSA trust anchors.
- Publish technical note in IETF DNSOP WG.
- Develop visualization dashboard for benchmark comparison

• Reporting and Standards Mapping

AIORI-2: Reporting and Standards Mapping

Team Name	Institution	Project Title	Focus Area
[Your Team Name]	[Your Institution]	Post-Quantum DNSSEC Benchmarking on PowerDNS	<input checked="" type="checkbox"/> DNSSEC <input type="checkbox"/> RPKI <input type="checkbox"/> QUIC <input type="checkbox"/> Encrypted DNS <input type="checkbox"/> Other

Date: 5th November 2025

• Standards Reference

RFC / Draft No.	Title / Area	Lifecycle Stage	How This Work Relates
RFC 4033-4035	DNSSEC Protocol Framework	Internet Standard	Base DNSSEC functionality under PQC test
RFC 8624	Algorithm Implementation Requirements	Internet Standard	Guidance for algorithm selection in DNSSEC
draft-ietf-lamps-pq-hybrid-sigs	PQC Hybrid Signatures	Internet-Draft	Provides baseline for hybrid PQC-DNSSEC design

• Impact on Standards Development

Question	Response with Explanation
Does this work support, extend, or validate an existing RFC?	Supports and stress-tests DNSSEC RFCs (4033-4035, 8624) with post-quantum
Could it influence a new Internet-Draft or update sections of an RFC?	Potentially contributes empirical data for PQC hybrid key management in DNSSEC.
Any feedback or data shared with IETF WG mailing lists (e.g., DNSOP, SIDROPS, DPRIVE, ...)	No direct feedback or WG interaction occurred during this sprint.
Planned next step (e.g., share measurement dataset / open PR / draft text).	Plan to publish benchmark dataset and share findings with AIORI and DNSOP in follow-up

• **References**

- RFC 4033–4035 – DNSSEC Protocol Framework
- RFC 8624 – Algorithm Implementation Requirements
- draft-ietf-lamps-pq-hybrid-sigs
- AIORI Testbed Documentation: [\[aori.in/testbed\]](http://aori.in/testbed)
- IETF DNSOP WG: <https://datatracker.ietf.org/wg/dnsop>

• **Acknowledgments**

We thank AIORI mentors, and our institution's research node for infrastructure and guidance.

• **Reflections from the Team**

- **Amanpreet Singh Gandhi:** “Integrating PQC algorithms into DNSSEC made us appreciate the importance of DNS payload optimization. We started out to integrate PQC algorithms into DNSSEC, and ended up with newfound respect for Internet engineering precision”
- **Developer:** “Container automation simplified benchmarking across multiple PQC implementations.”

• **About the Authors**

Code Crafters represent Guru Nanak Institute of Technology, Kolkata, participating in the AIORI-2 Hackathon (Nov 2025) to advance PQC-based Internet security standards.

• **Contact**

- **Lead Author:** Amanpreet Singh Gandhi
- **Email:** amanfromgnit@gmail.com
- **Mentor:** Dr. Mahamuda Sultana