
QR-to-Database Real-Time Interaction
System

Introduction

Executive Summary

Overview

Introduction & Problem Analysis

System Architecture & Design

Solution Architecture Diagram

Implementation Methodology
(Sprints)

05Backend & Schema (Django &
MySQL)
Features & Data Export

Official Reporting Table

Impact on Standards Development

Introduction

02
02
02

RFC-Open Source Contribution
Report

03
04
04

Technical Blog Series & Dev
Diaries

05

05

Reporting and Standards
Mapping

06
07

Conclusion & Future Work

References

Conclusion

08
08

Blog link

TABLE OF CONTENTS

Team Name:

Members:

Problem Statement:

Mrunal Waghmare(Student)

Harshada Vitthal Bhujbal(Student)

Bhagyashri Tanaji Thorat(Professor)

Bodhi Bytes

Name Designation Institution

Mrunal Waghmare Student International Institute of
Information Technology

Harshada Vitthal Bhujbal Student
International Institute of
Information Technology

Bhagyashri Tanaji Thorat Professor
International Institute of
Information Technology

Theme: Implementation and Testing of Selected Internet-Drafts / RFCs Organized by: Advanced

Internet Operations Research in India (AIORI)

Focus Areas: QR Code Real-Time Tracking System (AJAX Polling) Problem Statement: 11 (QR-to-

Database Real-Time Interaction System)

Organized by: Advanced Internet Operations Research in India (AIORI)

Collaborating Institutions: International Institute of Information Technology

Date:11/2025

Prepared by:

Introduction

Contact: mrunalwaghmare9@gmail.com

 This report details the design, implementation, and standards-compliance of the "QR Code Real-
Time Tracking System," a project by Team Bodhi Bytes for the AIORI-2 Hackathon (Problem Statement 11).
Our solution is a robust, full-stack web application built on a proven and scalable technology stack:
Python/Django, Django REST Framework (DRF), and MySQL

The system provides a "Host" view (/generate_qr/) to create new, trackable QR codes and a "Dashboard"
view (/dashboard/) that displays scan events as they happen. To meet the "dynamic update"
requirement, we implemented a reliable AJAX Polling mechanism. This is a deliberate architectural
choice that provides a near-instantaneous, real-time effect for the user, ensures high reliability on
standard HTTP/1.1 infrastructure, and avoids the deployment and state-management complexity of push-
based (WebSocket) solutions.
The platform is complete with a scalable RESTful API, a dynamic QR strategy, and an "Export to Sheets"
function for full data audibility, demonstrating a mature, production-ready approach to the problem.

Executive Summary

Overview
 Our primary goal was to build a system that was not only functional but also reliable, scalable, and
maintainable.
Develop a Scalable Backend: To build a secure, full-stack backend using Django and a relational MySQL
database (qr_realtime_db) capable of handling a high volume of scan events.
Expose a Clean API Layer: To utilize Django REST Framework (DRF) to expose all data interactions via a
clean, versionable, and well-documented RESTful API.
Implement "Dynamic Updates" via Polling: To successfully fulfill the "dynamic update" requirement of the
problem statement by using a client-side AJAX Polling loop (fetch within setInterval) that queries the
DRF API for new data.
Design a Dynamic QR Strategy: To create a flexible system where the physical QR code (the key) is static,
but the backend logic, data, and event details are dynamic, allowing for updates without re-printing
codes.

Provide an End-to-End Auditable Workflow: To deliver a complete platform that covers
the entire data lifecycle: QR generation, mobile scanning, database insertion via the API,
and final data export via a CSV/Sheets function.

mailto:mrunalwaghmare9@gmail.com

Introduction & Problem Analysis

Background: Problem Statement 11

 The problem statement called for a "QR-to-Database Real-Time Interaction System." The
core workflow required (1) a webpage to display a QR code, (2) a mobile device to scan it, (3) a
backend to receive the data, and (4) the original webpage to "dynamically update" to show the
scan data without a manual refresh.
The prompt explicitly referenced advanced standards like RFC 7519 (JWT) and push-based
technologies (WebSockets), but the fundamental challenge was to create a reliable two-way
interactive system.

The "Real-Time" Challenge: Polling vs. Push

 For any "real-time" web application, there is a fundamental architectural choice:
Push-Based (e.g., WebSockets - RFC 6455): This involves a stateful, bi-directional
connection between the client offers true, instant (sub-second) updates but carries
significant implementation and deployment overhead (e.g., managing Django
Channels, a Redis message broker, and a separate ASGI server like Daphne or Uvicorn).
Pull-Based (e.g., AJAX Polling): This involves a stateless, client-driven loop that repeatedly
asks the server ("pulls") for new data over standard HTTP. It is simpler to implement,
scales horizontally with any standard web server (like Gunicorn), and leverages the
mature, stateless nature of RFC 9110 (HTTP).

Our Proposed Solution: The Pragmatic, Scalable Stack

 Team Bodhi Bytes made a deliberate engineering decision to build our solution on the
AJAX Polling model.
We concluded that for the target use case (event check-ins, attendance), a 1-3 second delay is
commercially and functionally acceptable. The "real-time effect" is achieved without incurring
the high complexity and "brittle" nature of a stateful WebSocket solution.
Our architecture—Django + DRF + MySQL + AJAX Polling—is a classic, robust, and highly
scalable pattern that prioritizes reliability and maintainability. It fully leverages the power of
standard, well- understood Internet RFCs like HTTP/1.1 and JSON.

Component Technology Role

Backend Python, Django
Handles routing, application logic, and database
communication.

API Layer Django REST
Framework (DRF)

Exposes a clean, RESTful API (/api/data/) for the
frontend to consume.

Database MySQL The relational database (schema qr_realtime_db) for
persistent storage of scan events.

Frontend
HTML, CSS,
JavaScript (Fetch
API)

Renders the dashboard and runs the setInterval
polling loop.

QR
Generation

qrcode (Python
Library)

Generates the QR code images from within the
Django view.

System Architecture & Design

Technology Stack

Solution Architecture Diagram

1.The architecture follows a standard 3-tier model:
Client Tier (Browser): The user accesses two main pages:
/generate_qr/ : A Django-rendered HTML page that displays a QR code.
/dashboard/ : A Django-rendered HTML page containing JavaScript that initiates the
AJAX polling loop.

 2.Application Tier (Django/DRF Server):
A standard WSGI server (e.g., Gunicorn) runs the Django application.
views.py handles requests for the HTML pages.
DRF (views.py and serializers.py) handles requests for the /api/data/ endpoint,
communicating with the database.

 3.Data Tier (MySQL):
The qr_realtime_db database stores all scan events in a table (e.g., scanner_scanevent).

Workflow:
Host opens /generate_qr/ . The Django backend creates a new ScanEvent record in the
database (with a pending status) and generates a QR code pointing to a URL (e.g.,
/scan/123).
Host opens /dashboard/ on a separate screen. The JavaScript on this page starts polling
/api/data/ every 3 seconds.
Attendee scans the QR code, opening the /scan/123 link. This link (when visited) triggers
a Django view that updates the ScanEvent record's status to completed and adds user
info.
Dashboard (on its next poll) receives the updated JSON from /api/data/ , sees the
completed
status, and dynamically adds the new scan to the live feed table using JavaScript.

Implementation Methodology (Sprints)

Our team followed a 5-sprint methodology to build and test the application.

Sprint 1: Backend & Schema (Django & MySQL)
Action: Initialized the Django project (qr_realtime). Created the scanner app.
Code: Defined the ScanEvent model in scanner/models.py .
Database: Configured settings.py to connect to our local MySQL server and the
qr_realtime_db database.
Result: Ran manage.py migrate to successfully create the scanner_scanevent table.

Sprint 2: API Layer (DRF)
Action: Installed djangorestframework .
Code: Created scanner/serializers.py with a ScanEventSerializer to control the JSON
output. Created scanner/views.py with a DRF ModelViewSet (or ListAPIView) to
expose the data.
Result: Tested the GET /api/data/ endpoint using a browser and confirmed an empty
JSON array [] was returned.

Sprint 3: QR Generation & Scan Logic
Action: Built the standard Django views for the host and attendee.
Code: Created the /generate_qr/ view. This view creates a new ScanEvent object
(status: pending) and passes its event_id to the template. The template uses the
qrcode library (or a JS-based one) to render the QR.
Code: Created the /scan/<uuid:event_id>/ view. This view is the target of the QR code.
When a user scans and opens this link, the view finds the ScanEvent by its ID,
updates its status to completed , and saves the user's information.
Result: A fully functional data-capture loop, verifiable by checking the database
manually.

Sprint 4: The Live Dashboard (AJAX Polling)
Action: This was the core sprint for fulfilling the "dynamic update" requirement.
Code: Built the dashboard.html template.
Code: Wrote the client-side JavaScript to implement the AJAX Polling loop. (See
Section 5.2 for the full code). This script runs on page load, calls fetch('/api/data/')
every 3000ms, and re- renders a table with the returned JSON data.
Result: A working live dashboard. A scan in Sprint 3 now appears on the dashboard
within 3 seconds without a page refresh.

Sprint 5: Features & Data Export
Action: Added the "Export to Sheets" feature mentioned in the README.md .
Code: Wrote a JavaScript function on dashboard.html that, when clicked, takes the
current data (from the last API poll), formats it as a CSV string, and triggers a browser
download.
 Result: A complete, auditable system.

Team
Name Institution Project Title Focus Area

Bodhi Bytes

International
Institute of
Information
Technology
Pune

QR Code Real-Time
Tracking System (AJAX
Polling)

[x] Other: HTTP-based
Web Services & RESTful
APIs

Reporting and Standards Mapping

Official Reporting Table

Standards Reference (In-Depth Analysis)

RFC 9110 (HTTP) & RFC 8259 (JSON)
 Our project is a direct implementation and validation of these two foundational Internet
Standards.

RFC 9110 (HTTP): The Polling Foundation Our entire "real-time" architecture is built on
the standard, stateless, request-response model of HTTP.

Validation: We validate that the RFC 9110 GET method is a robust and sufficient
mechanism for "real-time effect" applications. The client (dashboard) repeatedly
sends a GET /api/data/ request. The server responds with the current state. This
stateless "pull" model is infinitely simpler to scale and deploy than a stateful "push"
model.
Implementation: Our JavaScript fetchData function (Section 5.2) constructs a
standard HTTP GET request. Our Django server, acting as the origin server, responds
with a standard HTTP response.
 Considerations: A critical aspect of a polling system is cache-busting. Our API must
return Cache-Control: no-cache, no-store headers to ensure the client always
receives fresh data from the origin server and not a stale response from a local or
intermediary cache. DRF and Django provide mechanisms to set these headers.

RFC 8259 (JSON): The Data Interchange This standard is the "lingua franca" between our
backend and frontend.

Validation: We use JSON as our exclusive data interchange format. Its lightweight,
text-based nature (as defined in RFC 8259) is ideal for our high-frequency polling,
minimizing payload size.
Implementation:

Server-Side (DRF): Our ScanEventSerializer (Section 5.1) serializes Python
ScanEvent
objects into RFC 8259 -compliant JSON text.
Client-Side (JavaScript): Our fetchData function uses await response.json() , a
native browser method to parse the JSON text into a JavaScript object, allowing
for immediate manipulation and DOM rendering.

ISO/IEC 18004 (QR Code)
This project's core interaction model is based on this international standard, as cited in
Problem Statement 11. We use the QR code as the physical-to-digital bridge, acting as the
unique "key" to link a physical action (a scan) to a digital record in our database.

Question Response with Explanation

Does this work
support, extend,
or validate an
existing RFC?

Yes, it validates the robustness of RFC 9110 (HTTP) for "real-time"
applications. It proves that a well-implemented AJAX Polling architecture,
built on a scalable backend (Django/DRF), can be a highly reliable, scalable,
and simpler alternative to RFC 6455 (WebSocket) . It is a pragmatic
solution for use cases where near-real-time (1-3 second delay) is
acceptable and deployment simplicity is a priority.

Could it influence
a new Internet-
Draft or update
sections of an
RFC?

This work highlights the practical separation of liveness (the real-time
effect) and credentials (the security). The problem statement mentions
both. Our project, by focusing on a stable HTTP polling mechanism for
liveness, creates a perfect foundation to add a RFC 7519 (JWT) layer for
credentials. This could inform practical, "best-practice" drafts on
implementing JWTs over standard, polling-based HTTP transports, which is
a very common but often-overlooked real-world pattern.

Any feedback or
data shared with
IETF WG mailing
lists (e.g., DNSOP,
SIDROPS,
DPRIVE, QUIC)?

N/A (Hackathon Prototype)

Planned next step
(e.g., share
measurement
dataset / open PR
/ draft text).

Implement RFC 7519 (JWT) based authentication. As noted in our
Standards Reference and Future Work, our immediate next step is to
secure our DRF endpoints using DRF's built-in token authentication (which
is JWT-compatible). This will fulfill the advanced security scope of the
problem statement by creating a fully verifiable and auditable credential
for each scan, proving our architecture can be easily and securely
extended.

RFC 7519 (JWT) & RFC 6455 (WebSocket)

 These standards, while mentioned in the problem statement, were consciously deferred as
part of a pragmatic engineering trade-off.

RFC 6455 (WebSocket): We opted for an AJAX Polling (RFC 9110) solution to avoid the
implementation and deployment complexity of a stateful WebSocket (RFC 6455)
system. Our architecture (Django + Gunicorn) is a standard, stateless setup. Supporting
WebSockets would require a fundamental shift to an ASGI stack (Daphne/Uvicorn),
Django Channels, and a Redis message broker, which we deemed high-risk and high-
overhead for a hackathon prototype where a 1-3 second update delay is acceptable.
RFC 7519 (JWT): This standard represents the clear "next step" for our project (see
Section 7.2). Our current API is open for simplicity. A production-ready version would use
RFC 7519 to secure the scan-submission endpoint. Our DRF-based architecture is
specifically designed to make this an easy addition, using a library like DRF Simple JWT .

Impact on Standards Development

Conclusion & Future Work
Conclusion

 Team Bodhi Bytes has successfully designed, implemented, and tested a "QR Code Real-
Time Tracking System." We have met all core requirements of Problem Statement 11, delivering
a functional, end-to- end system for QR generation, scanning, and dynamic dashboard
updates.
Our deliberate architectural choice to use a Django/DRF backend with an AJAX Polling
frontend resulted in a robust, stateless, and highly maintainable application. This solution
validates the power of RFC 9110 (HTTP) and RFC 8259 (JSON) as a foundation for "real-time
effect" applications, prioritizing reliability and deployment simplicity over the complexities of
stateful push-based protocols. The final system is auditable, scalable, and demonstrates a
mature understanding of real-world engineering trade-offs.

Future Work & RFC Alignment

 Our architecture is perfectly poised for extension. The "Future Scope" directly aligns with the
advanced RFCs mentioned in the problem statement.

a. Implement RFC 7519 (JWT) for API Security: The highest priority is to secure the API. We
will use a library like DRF Simple JWT to require a Bearer Token for all API interactions,
particularly the /scan/<id> endpoint. This makes the scan submission a "verifiable
credential."

b. Implement RFC 6749 (OAuth 2.0) for Admin Login: The /generate_qr/ and /dashboard/
pages would be secured behind an admin login, likely using Django's built-in auth or a
social-auth provider following the OAuth 2.0 flow.

c.Optimize Polling with Long-Polling: To reduce "empty" requests, we can upgrade our
simple polling to HTTP Long-Polling. In this model, the server holds the GET /api/data/
request open until new data is available, then responds. This would be a "Phase 2"
optimization that still avoids WebSockets.

References

RFC 9110: "HTTP Semantics" (Internet Standard)
RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content" (Obsoleted by
9110)
RFC 8259: "The JSON Data Interchange Format" (Internet Standard)
RFC 7519: "JSON Web Token (JWT)" (Proposed Standard)
RFC 6455: "The WebSocket Protocol" (Proposed Standard)
ISO/IEC 18004: "QR Code" (International Standard)
Django: https://www.djangoproject.com/

Contact

Lead Author: Mrunal Waghmare Email: mrunalwaghmare9@gmail.com
Mentor: Prof. Bhagyshree Thorat

