
 

Problem Statement 17 
WireGuard Fabric (Management–Peer, Token-Join) 
 
Reference: IETF RFCs 768 (UDP), 7748 (X25519), 8439 (ChaCha20-Poly1305), 7693 
(BLAKE2), 7519 (JWT for join tokens) over 8446 (TLS 1.3)/9113 (HTTP/2) for the control plane, 
5389/8445 (STUN/ICE) for NAT traversal, and 1918/4193 (IPv4 private/IPv6 ULA) for overlay 
addressing in a distributed WireGuard Management–Peer fabric. 
 
Objective 
 
Design and implement a distributed WireGuard VPN fabric with a Management–Peer 
architecture. Management nodes coordinate the cluster, issue join tokens, and manage 
membership; peer nodes use tokens to join and form the worker/edge layer. The system must 
support single-node and multi-management clusters, elastic peer scaling, and fault 
tolerance. 
 
Problem 
 
Monolithic VPN setups don’t scale or fail over cleanly. Build a fabric where: 

1.​ Management Layer​
 

○​ Runs a management server (REST/gRPC). 
○​ Issues and revokes time-bound join tokens (scoped roles: mgmt/peer). 
○​ Maintains membership, IPAM (virtual IP pool), and per-node WireGuard configs. 
○​ Supports N≥3 management nodes with state replication (e.g., 

Postgres/etcd/raft) and leader election.​
 

2.​ Peer Layer​
 

○​ Peers join using tokens, receive virtual IPs, and auto-fetch WG configs/keys. 
○​ Peers securely communicate with all other peers and management nodes. 
○​ Supports horizontal scaling to hundreds/thousands of peers.​

 
3.​ Setup Workflow (must demonstrate)​

 
○​ Step 1: Start first management node (bootstrap cluster). 
○​ Step 2: Generate a join token. 
○​ Step 3: Use token to add another management node (cluster grows). 
○​ Step 4: Use token to add peer nodes at will.​

 
Functional Requirements 
 

●​ Token lifecycle: create, scope (mgmt/peer), TTL, single/multi-use, revoke.​
 

●​ IPAM: allocate/reclaim virtual IPs; avoid collision; persist state. 
●​ Config delivery: signed WG configs (pubkey, allowed-ips, endpoints); rotate keys 

without breaking tunnels. 
●​ Health & membership: heartbeats, status API, graceful removal/quarantine. 

https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/rfc/rfc7748
https://www.rfc-editor.org/rfc/rfc8439
https://www.rfc-editor.org/rfc/rfc7693
https://www.rfc-editor.org/rfc/rfc7693
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc5389
https://www.rfc-editor.org/rfc/rfc8445
https://www.rfc-editor.org/rfc/rfc1918
https://www.rfc-editor.org/rfc/rfc4193


 

●​ Topology modes:​
 

○​ Single management node (dev/test). 
○​ Multi-management cluster (redundancy/failover).​

 
●​ Security: TLS for control-plane; per-node authZ; audit log of membership changes.​

 
Non-Functional Requirements 
 

●​ Resilience: loss of one management node must not disrupt existing tunnels. 
●​ Scalability: show join rate and steady-state metrics for ≥100 peers. 
●​ Observability: metrics (join latency, key-rotate time, churn), logs, and alerts. 
●​ Portability: run across clouds/DC/edge (Docker/K8s or compose).​

 
Deliverables 
 

●​ Management service (containerized) with APIs & minimal UI/CLI. 
●​ Peer join agent (script/binary) that exchanges token → retrieves config → brings up wg 

interface. 
●​ Docs/Runbook: bootstrap, add mgmt/peer, rotate keys, revoke, teardown. 
●​ Demo scripts: one-shot lab showing Steps 1–4 and failover test.​

 
Test Scenarios (must pass) 
 

1.​ Tokened joins: peers and a second management node join via issued tokens. 
2.​ Failover: kill one management node—fabric continues; add a new peer successfully. 
3.​ Scale-out: add 50–100 peers; verify unique IPs and full mesh (or hub-and-spoke) 

reachability. 
4.​ Rotation & revoke: rotate a peer key without tunnel drop; revoke a token and block 

joins.​
 

Evaluation Criteria 
 

●​ Architecture & Reliability (30%): clean separation of mgmt/peer, HA behavior, safe 
state.​
Functionality (25%): token lifecycle, IPAM, config delivery, health. 

●​ Security (15%): TLS, authZ scopes, auditability, secret handling. 
●​ Scalability & Observability (15%): metrics, logs, demonstrated scale. 
●​ Docs & UX (15%): clear README/runbooks, scripts, and a simple operator UX. 

 


	Problem Statement 17 
	WireGuard Fabric (Management–Peer, Token-Join) 


