
 

Problem Statement 12 
Website Health Monitor with Multi-Channel Alerts (Django) 
 
Reference:HTTP semantics RFC 9110 (and 9112/9113/9114), JSON RFC 8259, ICMP RFC 
792/4443, TLS RFC 8446, SMTP RFC 5321/5322/6409/4954/3207/8314, WebSocket RFC 
6455, Web Push RFC 8030/8292; and W3C: Web Notifications, Push API, Service Workers, 
WebSocket API. 
 
Objective 
 
Build a Django web application that monitors a target website’s health by periodically pinging 
its URL. If the site remains down for more than 2 minutes, notify users via: 

●​ In-app notifications (AJAX refresh; no full page reload) 
●​ Email (SMTP) 
●​ SMS (Twilio)​

 
Problem 
 
Service downtime hurts reliability and user trust. Teams must implement a system that: 

1.​ Continuously monitors a configurable target URL. 
2.​ Detects when the site is unavailable for > 2 minutes and raises a notification event. 
3.​ Delivers notifications to all registered users across three channels:​

 
○​ In-App: AJAX-driven notification dropdown. 
○​ Email: Django SMTP backend. 
○​ SMS: Twilio API (test credentials acceptable).​

 
Requirements 
 
1) Backend (Django) 
 

●​ Models​
 

○​ User: username, email, mobile 
○​ Notification: title, message, status (read/unread), channel (in-app/email/sms), 

timestamps​
 

●​ Monitoring​
 

○​ A ping/check function running every 30 seconds (e.g., Celery 
beat/CRON/thread) recording up/down state and timestamps 

○​ Logic to detect continuous downtime ≥ 120 seconds before triggering 
notifications  

https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc8259
https://www.rfc-editor.org/rfc/rfc792
https://www.rfc-editor.org/rfc/rfc4443
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc5321
https://www.rfc-editor.org/rfc/rfc5322
https://www.rfc-editor.org/rfc/rfc6409
https://www.rfc-editor.org/rfc/rfc5954
https://www.rfc-editor.org/rfc/rfc3207
https://www.rfc-editor.org/rfc/rfc8314
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc8030
https://www.rfc-editor.org/rfc/rfc8292


 

​
 

●​ APIs​
 

○​ Endpoint(s) to fetch unread notifications 
○​ Endpoint to mark as read​

 
2) Frontend (HTML, Bootstrap, JS, AJAX) 
 

●​ Navbar notification dropdown showing unread count + list 
●​ AJAX polling (e.g., every 5–10s) to fetch new notifications without page reload 
●​ Mark-as-read interaction (single or bulk)​

 
3) Notification Channels 
 

●​ In-App: Store Notification rows; expose via JSON; render in dropdown 
●​ Email: Use Django’s SMTP (send_mail or EmailMessage) 
●​ SMS: Use Twilio (twilio.rest.Client) with test credentials; handle failures gracefully​

 
Configuration & Security 
 

●​ Target URL, polling interval, and alert threshold should be configurable 
●​ Use environment variables for SMTP/Twilio secrets 
●​ Basic rate-limiting/deduping to avoid alert storms (e.g., send once per outage until 

recovery)​
 

Bonus (Optional) 
 

●​ Recovery notifications when site comes back up 
●​ Simple dashboard: uptime %, last outage, MTTR 
●​ Webhooks (Slack/Teams) as additional channels​

 
Evaluation Criteria 
 

●​ Ping check correctness (30s cadence; state tracking) 
●​ Downtime threshold (> 2 minutes) reliably triggers notifications 
●​ In-app UX updates via AJAX (no full reload) 
●​ Email delivery via SMTP 
●​ SMS delivery via Twilio test creds 
●​ Code quality: structure, comments, README with setup/run steps 

 


	Problem Statement 12 
	Website Health Monitor with Multi-Channel Alerts (Django) 


